Practice Quiz 4

- 1. Write down all the automorphisms of the group \mathbb{Z}_5 .
- **2.** Let \mathbb{R}^+ be the multiplicative group of positive real numbers. Show that the map $x \mapsto \sqrt[3]{x}$ is an automorphism of \mathbb{R}^+ .
- **3.** Show that the map $x \mapsto e^x$ is an isomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}^+, \cdot) .
- 4. For each of the following pairs of groups, decide whether they are isomorphic or not. In each case, give a brief reason why.
 - (a) U(5) and U(10).
 - (b) U(8) and \mathbb{Z}_4 .
 - (c) U(10) and \mathbb{Z}_4 .
 - (d) S_3 and \mathbb{Z}_6 .
 - (e) S_3 and D_3 .
 - (f) A_4 and D_6 .
- **5.** Let $\phi: G \to H$ be an isomorphism between two groups. Suppose G is abelian. Show that H is also abelian.
- **6.** Let g and h be two elements in a group G, and let ϕ_g and ϕ_h be the corresponding inner automorphisms. Suppose $\phi_g = \phi_h$. Show that $h^{-1}g$ belongs to the center of G.
- 7. Let G be a finite group, H a subgroup of G, and K a subgroup of H. Show that $|G:K| = |G:H| \cdot |H:K|$.
- 8. Let G be a group, and let a be an element of order 24. How many left cosets of $\langle a^{10} \rangle$ in $\langle a \rangle$ are there? List all these cosets.

- 9. Let D_4 be dihedral group of order 8 (the group of symmetries of the square), let $H = \langle R_1 \rangle$ be the subgroup generated by a counter-clockwise rotation by 90°, and let $K = \langle S_0 \rangle$ be the subgroup generated by a reflection across the horizontal axis.
 - (a) Write down all the left cosets of H in D_4 .
 - (b) Write down all the right cosets of H in D_4 .
 - (c) Write down all the left cosets of K in D_4 .
 - (d) Write down all the right cosets of K in D_4 .
 - (e) Compute the indices $|D_4:H|$ and $|D_4:K|$.
- 10. Let S_4 be the group of permutations of the set $\{1, 2, 3, 4\}$, and let A_4 the subgroup of even permutations.
 - (a) Write down all the left cosets of A_4 in S_4 .
 - (b) Write down all the right cosets of A_4 in S_4 .
 - (c) What is the index of A_4 in S_4 ?
- 11. Suppose a group contains elements of orders 1 through 9. What is the minimum possible order of the group?
- 12. Suppose K is a subgroup of H, and H is a subgroup of G. If |K| = 30 and |G| = 300, what are the possible values for |H|?
- 13. Suppose |G| = 21, and G has precisely one subgroup of order 3, and one subgroup of order 7. Show that G is cyclic.
- **14.** Let $G = \{(1), (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)\}$. For each integer *i* from 1 to 4, find the stabilizer of *i* and the orbit of *i*.