1. Write down all the automorphisms of the group \mathbb{Z}_{5}.
2. Let \mathbb{R}^{+}be the multiplicative group of positive real numbers. Show that the map $x \mapsto \sqrt[3]{x}$ is an automorphism of \mathbb{R}^{+}.
3. Show that the map $x \mapsto e^{x}$ is an isomorphism from $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+}, \cdot\right)$.
4. For each of the following pairs of groups, decide whether they are isomorphic or not. In each case, give a brief reason why.
(a) $U(5)$ and $U(10)$.
(b) $U(8)$ and \mathbb{Z}_{4}.
(c) $U(10)$ and \mathbb{Z}_{4}.
(d) S_{3} and \mathbb{Z}_{6}.
(e) S_{3} and D_{3}.
(f) A_{4} and D_{6}.
5. Let $\phi: G \rightarrow H$ be an isomorphism between two groups. Suppose G is abelian. Show that H is also abelian.
6. Let g and h be two elements in a group G, and let ϕ_{g} and ϕ_{h} be the corresponding inner automorphisms. Suppose $\phi_{g}=\phi_{h}$. Show that $h^{-1} g$ belongs to the center of G.
7. Let G be a finite group, H a subgroup of G, and K a subgroup of H. Show that $|G: K|=|G: H| \cdot|H: K|$.
8. Let G be a group, and let a be an element of order 24. How many left cosets of $\left\langle a^{10}\right\rangle$ in $\langle a\rangle$ are there? List all these cosets.
9. Let D_{4} be dihedral group of order 8 (the group of symmetries of the square), let $H=\left\langle R_{1}\right\rangle$ be the subgroup generated by a counter-clockwise rotation by 90°, and let $K=\left\langle S_{0}\right\rangle$ be the subgroup generated by a reflection across the horizontal axis.
(a) Write down all the left cosets of H in D_{4}.
(b) Write down all the right cosets of H in D_{4}.
(c) Write down all the left cosets of K in D_{4}.
(d) Write down all the right cosets of K in D_{4}.
(e) Compute the indices $\left|D_{4}: H\right|$ and $\left|D_{4}: K\right|$.
10. Let S_{4} be the group of permutations of the set $\{1,2,3,4\}$, and let A_{4} the subgroup of even permutations.
(a) Write down all the left cosets of A_{4} in S_{4}.
(b) Write down all the right cosets of A_{4} in S_{4}.
(c) What is the index of A_{4} in S_{4} ?
11. Suppose a group contains elements of orders 1 through 9 . What is the minimum possible order of the group?
12. Suppose K is a subgroup of H, and H is a subgroup of G. If $|K|=30$ and $|G|=300$, what are the possible values for $|H|$?
13. Suppose $|G|=21$, and G has precisely one subgroup of order 3 , and one subgroup of order 7 . Show that G is cyclic.
14. Let $G=\{(1),(13),(24),(12)(34),(13)(24),(14)(23),(1234),(1432)\}$. For each integer i from 1 to 4 , find the stabilizer of i and the orbit of i.
