Prof. Alexandru Suciu
MATH 3175
Group Theory
Fall 2010

Solutions to Practice Quiz 4

1. Write down all the automorphisms of the group \mathbb{Z}_{5}.

The automorphisms are $\phi_{k}: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$, with $\phi_{k}(x)=k x$, for $k=1,2,3,4$.
2. Let \mathbb{R}^{+}be the multiplicative group of positive real numbers. Show that the map $x \mapsto \sqrt[3]{x}$ is an automorphism of \mathbb{R}^{+}.

Let $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be the function given by $\phi(x)=\sqrt[3]{x}$. We need to show that ϕ is a bijection, and a homomorphism.

- ϕ injective. Suppose $\sqrt[3]{x}=\sqrt[3]{y}$. Taking cubes on both sides, we get $x=y$.
- ϕ surjective. Let $y \in \mathbb{R}^{+}$. Then $y=\phi(x)$, where $x=y^{3}$.
- ϕ a homomorphism. Compute: $\phi(x \cdot y)=\sqrt[3]{x \cdot y}=\sqrt[3]{x} \cdot \sqrt[3]{y}=\phi(x) \cdot \phi(y)$.

3. Show that the map $x \mapsto e^{x}$ is an isomorphism from $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+}, \cdot\right)$.

Let $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$be the function given by $\phi(x)=e^{x}$. We need to show that ϕ is a bijection, and a homomorphism.

- ϕ injective. Suppose $e^{x}=e^{y}$. Taking natural logs on both sides, we get $x=y$.
- ϕ surjective. Let $y \in \mathbb{R}^{+}$. Then $y=\phi(x)$, where $x=\log y$.
- ϕ a homomorphism. Compute: $\phi(x+y)=e^{x+y}=e^{x} \cdot e^{y}=\phi(x) \cdot \phi(y)$.

4. For each the following pair of groups, decide whether they are isomorphic or not. In each case, give a brief reason why.
(a) $U(5)$ and $U(10)$.

Yes. They are both cyclic of order 4.
(b) $U(8)$ and \mathbb{Z}_{4}.

No. $U(8)$ doesn't has an element of order 4 , but \mathbb{Z}_{4} does.
(c) $U(10)$ and \mathbb{Z}_{4}.

Yes. They are both cyclic of order 4.
(d) S_{3} and \mathbb{Z}_{6}.

No. S_{3} is not abelian, but \mathbb{Z}_{6} is.
(e) S_{3} and D_{3}.

Yes. They are both the permutation group of the three vertices of a triangle.
(f) A_{4} and D_{6}.

No. A_{4} doesn't has an element of order 6 , but D_{6} does.
5. Let $\phi: G \rightarrow H$ be an isomorphism between two groups. Suppose G is abelian. Show that H is also abelian.

Let $x, y \in H$. Since ϕ is a surjection, there are elements $a, b \in G$ such that $x=\phi(a)$ and $y=\phi(b)$. Since ϕ is a homomorphism, and G is abelian, we have:

$$
x y=\phi(a) \phi(b)=\phi(a b)=\phi(b a)=\phi(b) \phi(a)=y x .
$$

Hence, H is abelian.
6. Let g and h be two elements in a group G, and let ϕ_{g} and ϕ_{h} be the corresponding inner automorphisms. Suppose $\phi_{g}=\phi_{h}$. Show that $h^{-1} g$ belongs to the center of G.

By definition, $\phi_{g}(a)=g a g^{-1}$ and $\phi_{h}(a)=h a h^{-1}$, for any $a \in G$. Thus, the condition $\phi_{g}=\phi_{h}$ means $g a g^{-1}=h a h^{-1}$, for all $a \in G$. Hence,

$$
\left(h^{-1} g\right) a\left(h^{-1} g\right)^{-1}=h^{-1} g a g^{-1} h=h^{-1} h a h^{-1} h=a .
$$

Since this holds for any $a \in G$, we conclude that $h^{-1} g$ is in the center of G.
7. Let G be a finite group, H a subgroup of G, and K a subgroup of H. Show that $|G: K|=|G: H| \cdot|H: K|$.

Using Lagrange's Theorem, we get:

$$
|G: K|=\frac{|G|}{|K|}=\frac{|G|}{|H|} \cdot \frac{|H|}{|K|}=|G: H| \cdot|H: K| .
$$

8. Let G be a group, and let a be an element of order 24 . How many left cosets of $\left\langle a^{10}\right\rangle$ in $\langle a\rangle$ are there? List all these cosets.

The order of a^{10} is $24 / \operatorname{gcd}(10,24)=24 / 2=12$. So the number of left cosets is $|\langle a\rangle| /\left|\left\langle a^{10}\right\rangle\right|=24 / 12=2$. These cosets are:

$$
\begin{aligned}
\left\langle a^{10}\right\rangle & =\left\{e, a^{10}, a^{20}, a^{16}, a^{2}, \ldots\right\}, \\
a \cdot\left\langle a^{10}\right\rangle & =\left\{a, a^{11}, a^{21}, a^{17}, a^{3}, \ldots\right\} .
\end{aligned}
$$

9. Let D_{4} be dihedral group of order 8 (the group of symmetries of the square), let $H=\left\langle R_{1}\right\rangle$ be the subgroup generated by a counter-clockwise rotation by 90°, and let $K=\left\langle S_{0}\right\rangle$ be the subgroup generated by a reflection across the horizontal axis.
(a) Write down all the left cosets of H in D_{4}.
$H, S_{0} H$
(b) Write down all the right cosets of H in D_{4}. $H, H S_{0}$
(c) Write down all the left cosets of K in D_{4}.
$K, R_{1} K, R_{1}^{2} K, R_{1}^{3} K$
(d) Write down all the right cosets of K in D_{4}. $K, K R_{1}, K R_{1}^{2}, K R_{1}^{3}$
(e) Compute the indices $\left|D_{4}: H\right|$ and $\left|D_{4}: K\right|$.

$$
2,4
$$

10. Let S_{4} be the group of permutations of the set $\{1,2,3,4\}$, and let A_{4} the subgroup of even permutations.
(a) Write down all the left cosets of A_{4} in S_{4}.
$A_{4},(1,2) A_{4}$
(b) Write down all the right cosets of A_{4} in S_{4}.
$A_{4}, A_{4}(1,2)$
(c) What is the index of A_{4} in S_{4} ?
$\left|S_{4}: A_{4}\right|=\left|S_{4}\right| /\left|A_{4}\right|=4!/(4!/ 2)=2$.
11. Suppose a group contains elements of orders 1 through 9 . What is the minimum possible order of the group?

The order of the group is divisible by $8,9,5$ and 7 . So it is at least $\operatorname{lcm}(8,9,5,7)=$ $8 \times 9 \times 5 \times 7=2,520$. And $\mathbb{Z}_{2,520}$ satisfies the stated condition. So 2,520 is the minimum possible order for such a group.
12. Suppose K is a subgroup of H, and H is a subgroup of G. If $|K|=30$ and $|G|=300$, what are the possible values for $|H|$?

By Lagrange's Theorem, we have: $|K|=30$ divides $|H|$ and $|H|$ divides $|G|=300$. So the possible values of $|H|$ are $30,60,150$, and 300 .
13. Suppose $|G|=21$, and G has precisely one subgroup of order 3 , and one subgroup of order 7 . Show that G is cyclic.

Suppose the subgroup of order 3 is H, and the one of order 7 is K, then there are $1+2+6=9$ elements in $H \cup K$. Choose an element a from $G \backslash(H \cup K)$. Then the order of a must be 21 . Thus $G=\langle a\rangle$, and so G is cyclic.
14. Let $G=\{(1),(13),(24),(12)(34),(13)(24),(14)(23),(1234),(1432)\}$. For each integer i from 1 to 4 , find the stabilizer of i and the orbit of i.

Answer:

$$
\begin{array}{ccc}
i & \text { Stab }_{G} i & \text { orbit of } i \\
1 & (1),(24) & \{1,2,3,4\} \\
2 & (2),(13) & \{1,2,3,4\} \\
3 & (1),(24) & \{1,2,3,4\} \\
4 & (1),(13) & \{1,2,3,4\}
\end{array}
$$

