Prof. Alexandru Suciu Group Theory

Practice Quiz 2

- **1.** Let G be a group and let H and K be subgroups of G.
 - (a) Is $H \cap K$ a subgroup of G?
 - (b) Is $H \cup K$ a subgroup of G?

In each case, give a reason why, or why not.

- **2.** Let *H* be a subgroup of a group *G*, and let $C(H) = \{x \in G \mid xh = hx \text{ for all } h \in H\}$. Prove that C(H) is a subgroup of *G*.
- **3.** The quaternion group is the group $Q = \{\pm 1, \pm i, \pm j, \pm k\}$, with multiplication given by the rules

- (a) Write down a Cayley table for Q.
- (b) For each element $a \in Q$, find the order |a|.
- (c) For each element $a \in Q$, find the centralizer C(a).
- (d) What is the center of Q?
- 4. Let $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ be a matrix in $M_2(\mathbb{Z}_7)$. (a) Prove that A is in $GL_2(\mathbb{Z}_7)$.
 - (b) Find the order of A in $GL_2(\mathbb{Z}_7)$.
- **5.** Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - (a) If we view A as an element in $SL_2(\mathbb{R})$, what is the order of A?
 - (b) If we view A as an element in $SL_2(\mathbb{Z}_p)$, for p a prime, what is the order of A?

- **6.** Let G be a group, and a an element of G.
 - (a) Show that $C(a) \subseteq C(a^k)$, for all positive integers k.
 - (b) Suppose a has order 5. Prove that $C(a) = C(a^3)$.
 - (c) Give an example where a has order 6, and $C(a) \neq C(a^3)$.
- 7. Let $G = \mathbb{Z}_{20}$. Is G cyclic? For each element $a \in G$, indicate the order |a|. What are the generators of G?
- 8. Let G = U(20). Is G cyclic? For each element $a \in G$, indicate the order |a|.
- **9.** Let G = U(7). Is G cyclic? For each element $a \in G$, indicate the order |a|. What are the generators of G?
- **10.** Let G be a group, and let $a \in G$. Show that $\langle a \rangle = \langle a^{-1} \rangle$.
- **11.** Give an example of a non-cyclic group, all of whose proper subgroup are cyclic.
- 12. Let $G = \langle a \rangle$ be a group generated by an element a of order |a| = 24.
 - (a) Find each element of G which generates G.
 - (b) Find each element of G which generates the subgroup $\langle a^3 \rangle$.
 - (c) Write all the elements of the subgroup $\langle a^3 \rangle$.
 - (d) Find the order of a^{16} .