\qquad

1	2	3	4	5	6	7	8	9	10	11	12	Σ

Prof. Alexandru Suciu
MATH 3175
Group Theory
Fall 2010

Final Exam

1. Let G be the group defined by the following Cayley table.

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	5	4	7	6	1	8	3
3	3	8	5	2	7	4	1	6
4	4	3	6	5	8	7	2	1
5	5	6	7	8	1	2	3	4
6	6	1	8	3	2	5	4	7
7	7	4	1	6	3	8	5	2
8	8	7	2	1	4	3	6	5

(a) For each element $a \in G$, find: the order $|a|$; the inverse a^{-1}; and the centralizer $C(a)$.

a	1	2	3	4	5	6	7	8	
$\|a\|$									
a^{-1}									
$C(a)$									

(b) What is the center of G ?
2. Let G be an abelian group with identity e, and let H be the set of all elements $x \in G$ that satisfy the equation $x^{2}=e$. Prove that H is a subgroup of G.
3. Let $G=\langle a\rangle$ be a group generated by an element a of order $|a|=30$.
(a) Find all elements of G which generate G.
(b) List all the elements in the subgroup $\left\langle a^{6}\right\rangle$, together with their respective orders.
(c) What are the generators of the subgroup $\left\langle a^{6}\right\rangle$?
(d) Find an element in G that has order 3. Does this element generate G ?
4. (a) Draw the subgroup lattice of \mathbb{Z}_{24}.
(b) Make a table with all the elements of \mathbb{Z}_{24}, grouped according to their orders; how many elements of each possible order are there?
5. Let $\alpha=\left[\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 7 & 6 & 3 & 1 & 5\end{array}\right]$ and $\beta=\left[\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 7 & 5 & 1 & 3 & 6 & 2\end{array}\right]$, viewed as elements in the symmetric group S_{7}.
(a) Compute the products

$$
\beta \alpha=
$$

$$
\alpha \beta=
$$

(b) Compute the inverses
$\alpha^{-1}=$
$\beta^{-1}=$
(c) Compute the conjugate of β by α :
$\alpha \beta \alpha^{-1}=$
(d) Do α and β commute?
6. Let $\alpha=\left[\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 3 & 8 & 6 & 7 & 1 & 5 & 9 & 2\end{array}\right]$, viewed as an element in S_{9}.
(a) Write α as products of disjoint cycles.
(b) Find the order of α.
(c) Write α as a product of transpositions.
(d) Find the parity of α.
7. Let \mathbb{R} be the additive group of real numbers, and let \mathbb{R}^{*} be the multiplicative group of non-zero real numbers. Consider the map $\phi: \mathbb{R} \rightarrow \mathbb{R}^{*}$ given by $\phi(x)=e^{x}$.
(a) Show that ϕ is an homomorphism from \mathbb{R} to \mathbb{R}^{*}.
(b) What is the kernel of ϕ ?
(c) What is the image of ϕ ? For each $y \in \operatorname{im}(\phi)$ find an $x \in \mathbb{R}$ such that $\phi(x)=y$?
(d) Is ϕ injective (i.e., one-to-one)?
(e) Is ϕ surjective (i.e., onto)?
(f) Is ϕ an isomorphism?
8. Show that the following pairs of groups are not isomorphic. In each case, explain why.
(a) $U(15)$ and \mathbb{Z}_{8}.
(b) A_{4} and D_{12}.
(c) S_{4} and $D_{6} \times \mathbb{Z}_{2}$.
9. Let S_{3} be the group of permutations of the set $\{1,2,3\}$. Consider the subgroups $H=\langle(12)\rangle$ and $K=\langle(123)\rangle$.
(a) Write down all the left and right cosets of H in S_{3}. Be sure to indicate the elements of each coset.
(b) What is the order of H ?
(c) What is the index of H in S_{3} ?
(d) Is H a normal subgroup of S_{3} ?
(e) Write down all the left and right cosets of K in S_{3}. Be sure to indicate the elements of each coset.
(f) What is the index of K in S_{3} ?
(g) Is K a normal subgroup of S_{3} ?
10. (a) List all abelian groups (up to isomorphism) of order 100. Write each such group as a direct product of cyclic groups of prime power order.
(b) Let G be an abelian group of order 100. Suppose that G has exactly 3 elements of order 2 , and 4 element of order 5 . Determine the isomorphism class of G.
11. Let H be set of all 2×2 matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$, with $a, b, d \in \mathbb{Z}_{3}$ and $a d \neq 0$.
(a) Show that H is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$.
(b) Is H a normal subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$?
12. Let $\alpha: G \rightarrow H$ and $\beta: H \rightarrow K$ be two homomorphisms.
(a) Show that $\beta \circ \alpha: G \rightarrow K$ is a homomorphism.
(b) Show that $\operatorname{ker}(\alpha)$ is a normal subgroup of $\operatorname{ker}(\beta \circ \alpha)$.
(c) Show that $\operatorname{im}(\beta \circ \alpha)$ is a subgroup of $\operatorname{im}(\beta)$.

