The dihedral groups

The general setup. The dihedral group D_n is the group of symmetries of a regular polygon with n vertices. We think of this polygon as having vertices on the unit circle, with vertices labeled $0, 1, \ldots, n-1$ starting at (1,0) and proceeding counterclockwise at angles in multiples of 360/n degrees, that is, $2\pi/n$ radians.

There are two types of symmetries of the n-gon, each one giving rise to n elements in the group D_n :

- Rotations $R_0, R_1, \ldots, R_{n-1}$, where R_k is rotation of angle $2\pi k/n$.
- Reflections $S_0, S_1, \ldots, S_{n-1}$, where S_k is reflection about the line through the origin and making an angle of $\pi k/n$ with the horizontal axis.

The group operation is given by composition of symmetries: if a and b are two elements in D_n , then $a \cdot b = b \circ a$. That is to say, $a \cdot b$ is the symmetry obtained by applying first a, followed by b.

The elements of D_n can be thought as linear transformations of the plane, leaving the given n-gon invariant. This lets us represent the elements of D_n as 2×2 matrices, with group operation corresponding to matrix multiplication. Specifically,

$$R_k = \begin{pmatrix} \cos(2\pi k/n) & -\sin(2\pi k/n) \\ \sin(2\pi k/n) & \cos(2\pi k/n) \end{pmatrix},$$

$$S_k = \begin{pmatrix} \cos(2\pi k/n) & \sin(2\pi k/n) \\ \sin(2\pi k/n) & -\cos(2\pi k/n) \end{pmatrix}.$$

It is now a simple matter to verify that the following relations hold in D_n :

$$R_{i} \cdot R_{j} = R_{i+j}$$

$$R_{i} \cdot S_{j} = S_{i+j}$$

$$S_{i} \cdot R_{j} = S_{i-j}$$

$$S_{i} \cdot S_{j} = R_{i-j}$$

where $0 \le i, j \le n-1$, and both i+j and i-j are computed modulo n.

The Cayley table for D_n can be readily computed from the above relations. In particular, we see that R_0 is the identity, $R_i^{-1} = R_{n-i}$, and $S_i^{-1} = S_i$.

The group D_3 . This is the symmetry group of the equilateral triangle, with vertices on the unit circle, at angles 0, $2\pi/3$, and $4\pi/3$. The matrix representation is given by

$$R_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad R_{1} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \qquad R_{2} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix},$$

$$S_{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad S_{1} = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \qquad S_{2} = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

while the Cayley table for D_3 is:

	R_0	R_1	R_2	S_0	S_1	S_2
R_0	R_0	R_1	R_2	S_0	S_1	S_2
R_1	R_1	R_2	R_0	S_1	S_2	S_0
R_2	R_2	R_0	R_1	S_2	S_0	S_1
S_0	S_0	S_2	S_1	R_0	R_2	R_1
S_1	S_1	S_0	S_2	R_1	R_0	R_2
S_2	S_2	S_1	S_0	R_2	R_1	R_0

The group D_4 . This is the symmetry group of the square with vertices on the unit circle, at angles $0, \pi/2, \pi$, and $3\pi/2$. The matrix representation is given by

$$R_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad R_{1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad R_{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad R_{3} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$
$$S_{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad S_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad S_{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad S_{3} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

while the Cayley table for D_4 is:

	R_0	R_1	R_2	R_3	S_0	S_1	S_2	S_3
R_0	R_0	R_1	R_2	R_3	S_0	S_1	S_2	S_3
R_1	R_1	R_2	R_3	R_0	S_1	S_2	S_3	S_0
R_2	R_2	R_3	R_0	R_1	S_2	S_3	S_0	S_1
R_3	R_3	R_0	R_1	R_2	S_3	S_0	S_1	S_2
S_0	S_0	S_3	S_2	S_1	R_0	R_3	R_2	R_1
S_1	S_1	S_0	S_3	S_2	R_1	R_0	R_3	R_2
S_2	S_2	S_1	S_0	S_3	R_2	R_1	R_0	R_3
S_3	S_3	S_2	S_1	S_0	R_3	R_2	R_1	R_0