Math 3150 Final Exam Fall 2016

Name: \qquad

- The exam will last 2 hours.
- There are 8 problems.
- One single-sided sheet of theorems and definitions is allowed.
- Use the back sides of the test pages for scratch work, or if you need extra space.

1	
2	
3	
4	
5	
6	
7	
8	
Total	

Problem 1. Consider the sequence of functions

$$
f_{n}(x)=\frac{x}{1+n x^{2}} \quad \text { for } x \in \mathbb{R}, n \in \mathbb{N} \text {. }
$$

(a) (8 pts) Compute the derivative $f_{n}^{\prime}(x)$. Then find the pointwise limit $g(x)$ of the sequence of derivatives $f_{n}^{\prime}(x)$ as $n \rightarrow \infty$.
(b) (6 pts) Does the sequence of derivatives $f_{n}^{\prime}(x)$ converge uniformly? Why, or why not?

Problem 2. Let $g(x)=f(x)+2 x$, where $f:[0,1] \rightarrow \mathbb{R}$ is a differentiable function which satisfies $f(0)=f(1)$.
(a) (8 pts) Show that there exists a point $c \in[0,1]$ such that $g^{\prime}(c)=2$.
(b) (6 pts) Find explicitly such a point $c \in[0,1]$ for $f(x)=x(x-1)$.

Problem 3 (10 pts). Let X, Y and Z be subsets of \mathbb{R}. Suppose $f: X \rightarrow Y$ is a uniformly continuous function on X, and $g: Y \rightarrow Z$ is a uniformly continuous function on Y. Show that the composition $g \circ f: X \rightarrow Z$ defined by

$$
g \circ f(x)=g(f(x))
$$

is uniformly continuous.

Problem 4 (12 pts). Prove that the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{3}+n}{n^{3}}
$$

converges uniformly on any bounded interval $[0, M]$ for some $M>0$, but doesn't converge uniformly on $[0,+\infty)$. (Hint: Use the M-Test and Cauchy's criterion.)

Problem 5 (3 pts each). Determine whether each of the following sets is compact or not. Explain your reasons.
(a) $\left\{n+\frac{1}{n}: n \in \mathbb{N}\right\}$.
(b) $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=2\right\}$.
(c) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
(d) $\left\{n \sin \left(\frac{1}{n}\right): n \in \mathbb{N}\right\} \cup\{1\}$.

Problem 6 (12 pts). Suppose the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
|f(x)-f(y)| \leq C|x-y|^{2} \quad \text { for all } x, y \in \mathbb{R}
$$

for some $C>0$. Show that f must be constant. (Hint: First show that f is differentiable.)

Problem 7. Let $-\infty<a<b<\infty$. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function, and let $F:[a, b] \rightarrow \mathbb{R}$ be a function differentiable on (a, b) such that $F^{\prime}(x)=f(x)$.
(a) (7 pts) Find the limit

$$
\lim _{n \rightarrow \infty} \frac{b-a}{n}\left[f(a)+f\left(a+\frac{b-a}{n}\right)+f\left(a+\frac{2(b-a)}{n}\right)+\cdots+f\left(a+\frac{(n-1)(b-a)}{n}\right)\right]
$$

(b) (7 pts) Compute the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+e^{\frac{1}{n}}+e^{\frac{2}{n}}+\cdots+e^{\frac{n-1}{n}}\right)
$$

Problem 8. Suppose $f:[0,1] \rightarrow[0,1]$ is a continuous function which maps $[0,1]$ into $[0,1]$.
(a) (8 pts) Show that there exists a point $c \in[0,1]$ such that $f(c)=c$. (Hint: Let $g(x)=$ $f(x)-x$.)
(b) (4 pts) Find the point c as in part (a) for $f(x)=\frac{x+1}{4}$.

