
Name:

Prof. Alexandru Suciu

MATH 3150 Real Analysis Fall 2011

Midterm Exam

Instructions: Write your name in the space provided. Calculators are permitted, but no

notes are allowed. Each problem is worth 10 points (with a bonus question worth 5 points).

1. Let a1 = 1, a2 = 3, . . . , an =
√

7 + 2an−1.

(a) Show that the sequence {an}n≥1 is strictly increasing.

(b) Show that the sequence {an}n≥1 is bounded above.

(c) Show that the sequence {an}n≥1 is converging. Give a reason for your answer.

(d) Find lim
n→∞

an.
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2. Let {xn}n≥1 be a sequence in a complete metric space (X, d).

(a) Suppose d(xn+1, xn) ≤ d(xn, xn−1)/2, for all n ≥ 2. Show that {xn} converges.

(b) Suppose d(xn+1, xn) ≤ 1/
√
n, for all n ≥ 1. Show by example that {xn} may not

converge.
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3. (a) Let S = {(x, y) ∈ R2 | x + y > 1}, and let A = {d((x, y), (0, 0)) | (x, y) ∈ S}.
Find inf(A).

(b) Let A = {x ∈ R | x2 < 3} and B = {y ∈ R | y < 2}. Find sup(A), sup(B), and
sup(A+B).
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4. Let (X, d) be a metric space and A a subset of X.

(a) Define the sets int(A), cl(A), and bd(A), i.e., the interior, the closure, and the
boundary of A.

(b) Recall that cl(A) = A∪A′, where A′ denotes the set of points x ∈ X having the
property that every open set U containing x also contains some point of A other
than x. Use this information to show that:

x ∈ cl(A)⇐⇒ D(x, ε) ∩ A 6= ∅, ∀ε > 0,

(c) (Bonus question: 5 points) Use part (b) to show that int(A) = A \ bd(A).
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5. Let

A = {(x, y) ∈ R2 | x2 + y2 < 1, x < 0, y ≤ 0} ∪ {(x, y) ∈ R2 | y = x, 0 < x < 1}.

(a) Draw a picture of the set A.

(b) What is the interior of A? Is A an open subset of R2?

(c) What is the closure of A? Is A a closed subset of R2?

(d) What is the boundary of A?
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6. Decide whether each of the following series converges or not. In each case, indicate
which test is used, and why that test yields the conclusion you are drawing.

(a)
∞∑
n=1

2n− 1

n3 + 1

(b)
∞∑
n=1

2n

n3 · log(n+ 1)


