Name: $\qquad$

MATH 3150

## Prof. Alexandru Suciu <br> Real Analysis <br> Midterm Exam

Fall 2011

Instructions: Write your name in the space provided. Calculators are permitted, but no notes are allowed. Each problem is worth 10 points (with a bonus question worth 5 points).

1. Let $a_{1}=1, a_{2}=3, \ldots, a_{n}=\sqrt{7+2 a_{n-1}}$.
(a) Show that the sequence $\left\{a_{n}\right\}_{n \geq 1}$ is strictly increasing.
(b) Show that the sequence $\left\{a_{n}\right\}_{n \geq 1}$ is bounded above.
(c) Show that the sequence $\left\{a_{n}\right\}_{n \geq 1}$ is converging. Give a reason for your answer.
(d) Find $\lim _{n \rightarrow \infty} a_{n}$.
2. Let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence in a complete metric space $(X, d)$.
(a) Suppose $d\left(x_{n+1}, x_{n}\right) \leq d\left(x_{n}, x_{n-1}\right) / 2$, for all $n \geq 2$. Show that $\left\{x_{n}\right\}$ converges.
(b) Suppose $d\left(x_{n+1}, x_{n}\right) \leq 1 / \sqrt{n}$, for all $n \geq 1$. Show by example that $\left\{x_{n}\right\}$ may not converge.
3. (a) Let $S=\left\{(x, y) \in \mathbb{R}^{2} \mid x+y>1\right\}$, and let $A=\{d((x, y),(0,0)) \mid(x, y) \in S\}$. Find $\inf (A)$.
(b) Let $A=\left\{x \in \mathbb{R} \mid x^{2}<3\right\}$ and $B=\{y \in \mathbb{R} \mid y<2\}$. Find $\sup (A), \sup (B)$, and $\sup (A+B)$.
4. Let $(X, d)$ be a metric space and $A$ a subset of $X$.
(a) Define the sets $\operatorname{int}(A), \operatorname{cl}(A)$, and $\operatorname{bd}(A)$, i.e., the interior, the closure, and the boundary of $A$.
(b) Recall that $\operatorname{cl}(A)=A \cup A^{\prime}$, where $A^{\prime}$ denotes the set of points $x \in X$ having the property that every open set $U$ containing $x$ also contains some point of $A$ other than $x$. Use this information to show that:

$$
x \in \operatorname{cl}(A) \Longleftrightarrow D(x, \epsilon) \cap A \neq \emptyset, \forall \epsilon>0,
$$

(c) (Bonus question: 5 points) Use part (b) to show that $\operatorname{int}(A)=A \backslash \operatorname{bd}(A)$.
5. Let

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1, x<0, y \leq 0\right\} \cup\left\{(x, y) \in \mathbb{R}^{2} \mid y=x, 0<x<1\right\}
$$

(a) Draw a picture of the set $A$.
(b) What is the interior of $A$ ? Is $A$ an open subset of $\mathbb{R}^{2}$ ?
(c) What is the closure of $A$ ? Is $A$ a closed subset of $\mathbb{R}^{2}$ ?
(d) What is the boundary of $A$ ?
6. Decide whether each of the following series converges or not. In each case, indicate which test is used, and why that test yields the conclusion you are drawing.
(a)

$$
\sum_{n=1}^{\infty} \frac{2 n-1}{n^{3}+1}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n^{3} \cdot \log (n+1)}
$$

