\qquad

| 1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

MATH 3150
Real Analysis
Fall 2011
Final Exam
Put your name in the blanks above. Calculators are permitted. A single sheet of theorems and definitions is allowed. Provide explanations for all your answers. If needed, use the back of the page for additional space.

1. Let $f:[2,3] \rightarrow \mathbb{R}$ be a function, continuous on $[2,3]$, and differentiable on $(2,3)$. Suppose that $f(2)=6$ and $f(3)=9$. Show that, for some point $x_{0} \in(2,3)$, the tangent line to the graph of f at x_{0} passes through the origin. Illustrate the result with a sketch.
2. (a) Give an example of a connected subset $A \subset \mathbb{R}$ such that its complement, $\mathbb{R} \backslash A$, is also connected.
(b) Give an example of a connected subset $A \subset \mathbb{R}$ such that its complement, $\mathbb{R} \backslash A$, not connected.
(c) Give an example of a family of open subsets $\left\{U_{i}\right\}_{i \in I}$ of \mathbb{R} such that their intersection, $\bigcap_{i \in I} U_{i}$ is not open.
(d) Give an example of a family of closed subsets $\left\{C_{i}\right\}_{i \in I}$ of \mathbb{R} such that their union, $\bigcup_{i \in I} C_{i}$ is not closed.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, and let $G=\left\{(x, y) \in \mathbb{R}^{2} \mid y=f(x)\right\}$ be its graph.
(a) Show that G is a closed subset of \mathbb{R}^{2}.
(b) Show that G is a connected subset of \mathbb{R}^{2}.
(c) Is G a compact subset of \mathbb{R}^{2} ? Why, or why not?
4. Consider the following subset of the plane:

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \frac{x^{2}}{4}+y^{2} \leq 1\right.\right\}
$$

(a) Sketch the set A.
(b) Is A a closed subset of \mathbb{R}^{2} ? Why, or why not?
(c) Is A a bounded subset of \mathbb{R}^{2} ? Why, or why not?
(d) Is A a compact subset of \mathbb{R}^{2} ? Why, or why not?
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be two Lipschitz functions.
(a) Show that the composition of the two functions, $g \circ f: \mathbb{R} \rightarrow \mathbb{R}$, is also a Lipschitz function.
(b) Suppose now that both f and g are bounded functions. Show that the product of the two functions, $f \cdot g: \mathbb{R} \rightarrow \mathbb{R}$, is also a Lipschitz function.
(c) (Bonus) Give an example where $f \cdot g$ is not a Lipschitz function.
6. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{2 \pi x}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

(a) Show that f is continuous.
(b) Show that the restriction of f to the interval $[-1,1]$ is uniformly continuous.
(c) Show that f is not differentiable at $x=0$.
7. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}1, & \text { if } x=1 / 3 \\ 2, & \text { if } x=2 / 3 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Compute the lower and upper integrals, $\int_{0}^{1} f(x) d x$ and $\bar{\int}_{0}^{1} f(x) d x$.
(b) Show that f is Riemann-integrable, and compute $\int_{0}^{1} f(x) d x$.
8. Consider the function $f:[1, \infty) \rightarrow \mathbb{R}$ given by

$$
f(x)=\int_{1}^{\sqrt{x}} e^{t^{2}} d t
$$

(a) What is $f(1)$?
(b) Show that f is differentiable. What is its derivative?
(c) What is $f^{\prime}(4)$?

