HOMEWORK 4

- **1.** Let G be an abelian group, and n > 1. Show that $H_{n+1}(K(G, n), \mathbb{Z}) = 0$.
- **2.** Let X be a connected CW-complex with $\pi_n(X) = 0$, for all $n \ge 2$. Show that $\pi_n(X^n)$ is a free abelian group, for all $n \ge 2$.
- **3.** Let X be a connected CW-complex, with $\pi_i(X) = 0$ for 1 < i < n, for some $n \geq 2$. Let $h: \pi_n(X) \to H_n(X)$ be the Hurewicz homomorphism. Show that $H_n(X)/h(\pi_n(X)) \cong H_n(K(\pi_1(X), 1).$
- **4.** Let G be a group, and let $\{M_n\}_{n=1}^{\infty}$ be a sequence of $\mathbb{Z}G$ -modules.
 - (a) Construct a CW-complex X with $\pi_1(X) = G$, and $\pi_n(X) = M_n$ (as $\mathbb{Z}G$ -modules).
 - (b) If $X = K(G, 1) \times Y$, where $\pi_1(Y) = 0$, show that $\pi_n(X)$ is trivial as a $\mathbb{Z}G$ -module, for all n > 1.
- **5.** Let $f = p \circ q: T^3 \to S^2$ be the composite of the Hopf map $p: S^3 \to S^2$ with the quotient map $q: T^3 \to S^3$, collapsing the 2-skeleton of the 3-torus to a point.
 - (a) Show that $f_* = 0: \pi_n(T^3) \to \pi_n(S^3)$, for all $n \ge 1$.
 - (b) Show that $f_* = 0 \colon \widetilde{H}_n(T^3) \to \widetilde{H}_n(S^3)$, for all $n \ge 0$.
 - (c) Show that, nevertheless, f is not homotopic to a constant map.