HOMEWORK 1

- **1.** Let $f: A \to X$ be a cofibration. Prove:
 - (a) f is injective.
 - (b) The co-restriction $f \colon A \to f(A)$ is a homeomorphism.
 - (c) If X is Hausdorff, then f(A) is a closed subset of X.
- **2.** Let $f: A \to X$ be a cofibration. Suppose A is contractible. Show that the quotient map, $q: X \to X/A$ is a homotopy equivalence.
- **3.** Let $f: A \to X$ be a cofibration, where A and X are locally compact Hausdorff spaces, and let Y be an arbitrary space. Then the map $p: Y^X \to Y^A$ defined by $p(g) = g \circ f$ is a fibration.
- **4.** Let Y be a space, and let $p: Y^I \to Y \times Y$ be the map $p(\omega) = (\omega(0), \omega(1))$, for $\omega: I \to Y$. Show that p is a fibration.
- 5. Let X be a well-pointed space. Show that the path-space PX and the loop-space ΩX are both well-pointed spaces.