BUNDLES OF HIGHER LOGARITHMIC DERIVATIONS

Jean Vallès

Université de Pau et des Pays de l'Adour Meeting AMS-RMS 2013

Aim of this work (in progress):

- (1) Associate, to any <u>line arrangement</u> in \mathbb{P}^2 and for any $d \geq 0$, a <u>vector bundle</u> of rank d+1 and a <u>torsion sheaf</u> supported by the (d+2) multiple points of the arrangement.
 - For d = 1, recover the bundle of logarithmic derivations introduced by Saito in 1980 in Theory of logarithmic differential forms and logarithmic vector.
- (2) Define freeness for these bundles (d-freeness) and give examples.
- (3) Deduce (new) results for the bundle of logarithmic derivations (d = 1) and Terao's conjecture: "Freeness depends only on combinatorics".

Bundle of logarithmic derivations

$$\{L_1, \dots, L_m\} \leadsto D = \bigcup_{i=1}^m L_i = \{f = 0\}$$

Definition. The rank 2 vector bundle, kernel of the jacobian map

$$0 \longrightarrow T_D \longrightarrow \mathscr{O}_{\mathbb{P}^2}^3 \xrightarrow{(\partial_0, \partial_1, \partial_2)} \mathscr{O}_{\mathbb{P}^2}(m-1),$$

is called bundle of logarithmic derivations

Its sections $\delta \in H^0(\mathbb{P}^2, T_D(n))$ are derivations

$$\delta = F_0 \partial_0 + F_1 \partial_1 + F_2 \partial_2$$

where $F_i \in \mathbb{C}[X_0, X_1, X_2]_n$, such that $\delta(f) = 0$.

$$V = \text{vect}\{X_0, X_1, X_2\}$$

$$V^* = \text{vect}\{\partial_0, \partial_1, \partial_2\}$$

$$\Rightarrow \delta \in S^n V \otimes V^*.$$

Bundle of higher logarithmic derivations: A vector bundle parametrizing derivations ν such that

$$\nu \in S^n V \otimes S^d V^*$$
 and $\nu(f) = 0$.

The good space to work on the incidence variety

$$\mathbb{P}^{2} \xleftarrow{p} \mathbb{I} = \{(x, y) | x \in L_{y}\} \subset \mathbb{P}^{2} \times \check{\mathbb{P}}^{2}$$

$$\downarrow q \qquad \qquad \qquad \qquad \qquad \check{\mathbb{P}}^{2}$$

$$\mathbb{I} = \{X_{0}\partial_{0} + X_{1}\partial_{1} + X_{2}\partial_{2} = 0\}.$$

Here $\partial_0, \partial_1, \partial_2$ are dual coordinates!

$$p^{-1}(x) \simeq L_x$$
 and $qp^{-1}(x) = L_x$
 $q^{-1}(y) \simeq L_y$ and $qp^{-1}(y) = L_y$
 $x = (a, b, c) \iff L_x = \{a\partial_0 + b\partial_1 + c\partial_2 = 0\}$
 $y = (\alpha, \beta, \gamma) \iff L_y = \{\alpha X_0 + \beta X_1 + \gamma X_2 = 0\}$

FIGURE 1. 3 aligned points - 3 concurrent lines

$$D = \bigcup_{i=1}^{m} L_{y_i} \subset \mathbb{P}^2 \iff Z = \{y_1, \dots, y_m\} \subset \check{\mathbb{P}}^2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T_D \qquad \stackrel{?}{\iff} \qquad \mathcal{I}_Z \subset \mathscr{O}_{\check{\mathbb{P}}^2}$$

Theorem (FMV, Compositio 2013). $T_D = p_*(q^*\mathcal{I}_Z(1))$.

Proof. Recall that $\mathbb{I} = \mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2}(-1))$.

The canonical exact sequence twisted by 1:

$$0 \to \mathcal{I}_Z(1) \longrightarrow \mathscr{O}_{\check{\mathbb{P}}^2}(1) \longrightarrow \mathscr{O}_Z(1) \to 0,$$

gives on the \mathbb{P}^2 side (apply the functor p_*q^*):

$$0 \to p_*(q^*\mathcal{I}_Z(1)) \longrightarrow T_{\mathbb{P}^2}(-1) \xrightarrow{res} \bigoplus_{y_i \in Z} \mathscr{O}_{L_{y_i}}$$

"Unicity" of the map "res" $\Rightarrow p_*(q^*\mathcal{I}_Z(1)) = T_D$.

Generalisation

The canonical exact sequence twisted by $d \geq 1$:

$$0 \to \mathcal{I}_Z(d) \longrightarrow \mathscr{O}_{\check{\mathbb{P}}^2}(d) \longrightarrow \mathscr{O}_Z(d) \to 0,$$

gives on the \mathbb{P}^2 side:

$$0 \to p_*(q^*\mathcal{I}_Z(d)) \longrightarrow \operatorname{Sym}^d(T_{\mathbb{P}^2}(-1)) \xrightarrow{res} \bigoplus_{y_i \in Z} \mathscr{O}_{L_{y_i}}$$

The kernel is unique (up to linear isomorphism)

Notations

- $T_Z^{(d)} := p_* q^* \mathcal{I}_Z(d)$ is a v. b. of rank d+1
- $\mathfrak{R}_Z^{(d)} := R^1 p_* q^* \mathcal{I}_Z(d)$ is a torsion sheaf supported by $\{x, |L_x \cap Z| \geq d+2\}$

8

These sheaves can be understood locally

Figure 2. $|L \cap Z| = s$

$$\mathcal{I}_Z(d) \otimes \mathscr{O}_L = \mathscr{O}_L(d-s) \oplus \mathscr{O}_{y_1} \oplus \cdots \oplus \mathscr{O}_{y_s}$$

$$T_Z^{(d)} \otimes \mathbf{k}_x = \mathrm{H}^0(\mathcal{I}_Z(d) \otimes \mathscr{O}_{L_x}) \text{ constant}$$

$$\mathfrak{R}_Z^{(d)} \otimes \mathbf{k}_x = \mathrm{H}^1(\mathcal{I}_Z(d) \otimes \mathscr{O}_{L_x}) = \mathrm{H}^0(\mathscr{O}_L(s-d-2))$$

Let us summarize

$$D = \bigcup_{i=1}^m L_{y_i} \subset \mathbb{P}^2 \quad \Longleftrightarrow \quad Z = \{y_1, \dots, y_m\} \subset \check{\mathbb{P}}^2$$
 $\mathscr{O}_{\mathbb{P}^2}(-D), \text{ sing}(D) \quad \Longleftrightarrow \qquad \mathcal{I}_Z$
 $T_D, \text{ triple points of } D \leftarrow \mathcal{I}_Z(1)$
 $\{T_Z^{(d)}, \mathfrak{R}_Z^{(d)}\} \leftarrow \mathcal{I}_Z(d), d \geq 0$

Example. Torelli problem: \leftarrow -- or \leadsto ?

Why it is interesting? Because any canonical exact sequence related to $\mathcal{I}_Z(d)$ gives an information on $\{T_Z^{(d)}, \mathfrak{R}_Z^{(d)}\}$.

Example.

$$(1) \quad 0 \to \mathcal{I}_Z(d) \longrightarrow \mathcal{I}_{Z \setminus \{y\}}(d) \longrightarrow \mathscr{O}_y \to 0$$

$$(2) \quad 0 \to \mathcal{I}_{Z_1}(d-1) \longrightarrow \mathcal{I}_Z(d) \longrightarrow \mathscr{O}_{L_x}(d-|Z \cap L_x|) \to 0$$

(3)
$$0 \to \mathcal{I}_Z(d-1) \longrightarrow \mathcal{I}_Z(d) \longrightarrow \mathcal{I}_Z(d) \otimes \mathscr{O}_L \to 0$$

- (1) Ziegler Addition-Deletion Theorem, and the number of triple points on L_y .
- (2) Combinatorics of subarrangements.
- (3) An injective map $T_Z^{(d-1)} \hookrightarrow T_Z^{(d)}$.

One can associate to Z many tuples of positive integers:

$$Z \leadsto (a_{1,1}, a_{1,2}); (a_{2,1}, a_{2,2}, a_{2,3}); (a_{3,1}, a_{3,2}, a_{3,3}, a_{3,4}); \dots$$

such that

$$a_{1,1} \le a_{1,2}$$
 and $a_{1,1} + a_{1,2} = m - 1$,

$$a_{2,1} \le a_{2,2} \le a_{2,3}$$
 and $a_{2,1} + a_{2,2} + a_{2,3} = m - 3$,

$$a_{d,1} \le a_{d,2} \le \dots \le a_{d,d+1}$$
 and $a_{d,1} + a_{d,2} + \dots + a_{d,d+1} = m - \binom{d+1}{2}$.

Indeed $T_Z^{(d)} \otimes \mathscr{O}_L = \mathscr{O}_L(-a_{d,1}) \oplus \cdots \oplus \mathscr{O}_L(-a_{d,d+1})$ for L general.

Geometric invariants of Z, ie $H^0(\mathcal{I}_Z \otimes \mathcal{I}_x^{a_{d,1}}(d+a_{d,1})) \neq 0$.

Question Do we always have $a_{d,i} \leq a_{d+1,j}$?

Example

<u>Dual Hesse</u> 9 lines dual to the 9 inflection points of a smooth cubic curve C.

Proposition.

$$T_Z = \mathscr{O}_{\mathbb{P}^2}^2(-4), \quad T_Z^{(2)} = \operatorname{Sym}^2(\Omega_{\mathbb{P}^2})(1)$$

Proof.

$$Z = C \cap \operatorname{Hessian}(C) \implies \mathscr{O}_C(-Z) = \mathscr{O}_C(-3).$$

$$0 \to \mathscr{O}_{\check{\mathbb{P}}^2}(-1) \longrightarrow \mathcal{I}_Z(2) \longrightarrow \mathscr{O}_C(-1) \to 0.$$

$$p_*q^*\mathscr{O}_{\check{\mathbb{P}}^2}(-1) = R^1 p_* q^* \mathscr{O}_{\check{\mathbb{P}}^2}(-1) = 0$$

$$\downarrow T_Z^{(2)} = p_* q^* \mathscr{O}_C(-1) = \operatorname{Sym}^2(\Omega_{\mathbb{P}^2})(1).$$

(In particular $T_Z^{(2)} \not\rightsquigarrow Z$, i.e. not Torelli)

On any line l we have

$$\operatorname{Sym}^{2}(\Omega_{\mathbb{P}^{2}})(1) \otimes \mathscr{O}_{l} = \mathscr{O}_{l}(-1) \oplus \mathscr{O}_{l}(-2) \oplus \mathscr{O}_{l}(-3).$$

It implies that there is, at any point, a cubic curve passing through Z and this point.

In other words there is a pencil of cubics through Z.

If Z consists of 9 points not on a pencil, then on the general line l:

$$T_Z^{(2)} \otimes \mathscr{O}_l = \mathscr{O}_l(-2) \oplus \mathscr{O}_l(-2) \oplus \mathscr{O}_l(-2).$$

Remark. If $Z \subset C_{d+1}$ then

$$T_Z^{(d)} = p_* q^* \mathscr{O}_{C_{d+1}}(-Z)$$

In particular Z is not d-Torelli.

Resolution of BHD

$$0 \to \mathscr{O}_{\mathbb{P}^2 \times \check{\mathbb{P}}^2}(-1, -1) \xrightarrow{\sum X_i Y_i} \mathscr{O}_{\mathbb{P}^2 \times \check{\mathbb{P}}^2} \longrightarrow \mathscr{O}_{\mathbb{I}} \to 0.$$

Tensor by $q^*\mathcal{I}_Z(d)$ and push down by p:

$$0 \to \mathrm{H}^0(\check{\mathbb{P}}^2, \mathcal{I}_Z(d-1)) \otimes \mathscr{O}_{\mathbb{P}^2}(-1) \to \mathrm{H}^0(\check{\mathbb{P}}^2, \mathcal{I}_Z(d)) \otimes \mathscr{O}_{\mathbb{P}^2} \to T_Z^{(d)} \to \to \mathrm{H}^1(\check{\mathbb{P}}^2, \mathcal{I}_Z(d-1)) \otimes \mathscr{O}_{\mathbb{P}^2}(-1) \to \mathrm{H}^1(\check{\mathbb{P}}^2, \mathcal{I}_Z(d)) \otimes \mathscr{O}_{\mathbb{P}^2} \to \mathfrak{R}_Z^{(d)} \to 0.$$

When $Z \not\subset$ (curve of degree d), we have

$$0 \to T_Z^{(d)} \to (\mathscr{O}_{\mathbb{P}^2}(-1))^{m - \binom{d+1}{2}} \to \mathscr{O}_{\mathbb{P}^2}^{m - \binom{d+2}{2}} \to \mathfrak{R}_Z^{(d)} \to 0.$$

When there is no d+2 multiple point,

$$0 \to T_Z^{(d)} \to \mathscr{O}_{\mathbb{P}^2}^{m - \binom{d+1}{2}}(-1) \to \mathscr{O}_{\mathbb{P}^2}^{m - \binom{d+2}{2}} \to 0.$$

Chern classes:
$$c_1(T_Z^{(d)}) = {d+1 \choose 2} - m, c_2(T_Z^{(d)}) = {m - {d+1 \choose 2} \choose 2} - |\mathfrak{R}_Z^{(d)}|.$$

Freeness and d-freeness

Definition. D is d-free (free=1-free) with exponents $(a_1, \ldots, a_{d+1}) \in \mathbb{N}^{d+1}$ when $T_Z^{(d)} = \mathscr{O}_{\mathbb{P}^2}(-a_1) \oplus \cdots \oplus \mathscr{O}_{\mathbb{P}^2}(-a_{d+1}).$

• If D is d-free, $|\mathfrak{R}_Z^{(d)}| = {m - {d+1 \choose 2} \choose 2} - \sum_{i < j} a_i a_j$.

A general finite Z is not free, on the contrary it leads to stable vector bundles.

Freeness and d-freeness: Example

Ceva's arrangement:

six lines, 4 triple points \bullet , 3 double \bigstar

- $\bullet T_Z = \mathscr{O}_{\mathbb{P}^2}(-2) \oplus \mathscr{O}_{\mathbb{P}^3}(-3);$
- $T_Z^{(2)} = \mathcal{O}_{\mathbb{P}^2}^3(-1)$ ($Z \not\subset \text{conic and } m = 6$).

Freeness and d-freeness: Example

Hesse arrangement 12 lines through 9 inflection points.

9 quadruple points \bullet , 12 double points \bigstar .

FIGURE 3. Hesse arrangement

$$T_Z = \mathscr{O}_{\mathbb{P}^2}(-4) \oplus \mathscr{O}_{\mathbb{P}^2}(-7), \quad T_Z^{(2)} \stackrel{?}{=} \mathscr{O}_{\mathbb{P}^2}^3(-3), \quad T_Z^{(3)} \stackrel{?}{=} \Omega \oplus \Omega$$

Freeness and d-freeness: Example

B3 arrangement: 9 lines, 3 quadruple points and 4 triple points

Figure 4. Dual picture of B3 arrangement: 9 points, 7 lines

- $\bullet T_Z = \mathscr{O}_{\mathbb{P}^2}(-3) \oplus \mathscr{O}_{\mathbb{P}^3}(-5);$
- $\bullet \ T_Z^{(2)} = \mathscr{O}_{\mathbb{P}^2}^3(-2);$
- $T_Z^{(3)} = \mathscr{O}_{\mathbb{P}^2} \oplus \mathscr{O}_{\mathbb{P}^2}^3(-1)$, since $H^0(\mathcal{I}_Z(3)) \neq 0$.

An arrangement closed to B3: 9 lines, 3 quadruple points and no triple point.

Figure 5. Dual picture: 9 points on 3 four secant lines

- T_Z is not free;
- $\bullet \ T_Z^{(2)} = \mathscr{O}_{\mathbb{P}^2}^3(-2);$
- $T_Z^{(3)} = \mathscr{O}_{\mathbb{P}^2} \oplus \mathscr{O}_{\mathbb{P}^2}^3(-1)$, since $H^0(\mathcal{I}_Z(3)) \neq 0$.

Z on d lines: d-freeness

B3, quite B3 and Ceva arragements are consequences of:

Theorem. Assume that $Z \subset \bigcup_{i=1}^{d+1} L_i$, $\bigcup L_i$ has no triple point, $L_i \cap L_j \in Z$ and $|L_i \cap Z| = n_i + d$, $n_i \ge 0$. Then $T_Z^{(d)} = \bigoplus_{i=1}^{d+1} \mathscr{O}_{\mathbb{P}^2}(-n_i)$.

Proof. The map $\mathcal{I}_Z(d) \to \oplus \mathscr{O}_{L_i}(-n_i)$ is surjective. Its kernel is $\mathscr{O}_{\mathbb{P}^2}(-1)$. It has nor direct image neither higher direct image.

Find d-free arrangements by induction

Theorem. Let Z be a set of m points, $t \geq 0$ and L be a line such that $|L \cap Z| = d + t$. Assume that any k secant line $(k \geq d + 1)$ to $Z_1 = Z \setminus L$ is k + 1 secant to Z. Then, Z_1 is (d - 1)-free w.e. (a_1, \ldots, a_d) implies Z is d-free w.e. (a_1, \ldots, a_d, t) .

Let Z be d-free. Let L a line meeting each d+2 secant l_i to Z in a point y_i , $1 \le i \le s$ then $Z \cup \{y_1, \ldots, y_s\}$ is d-free.

Find d-free arrangements by induction. Hint of the proof

FIGURE 6. \bigstar : Points of Z_1

$$0 \to \mathcal{I}_{Z_1}(1) \to \mathcal{I}_Z(2) \to \mathscr{O}_L(-2) \to 0$$

gives on the other side

$$0 \to T_{Z_1} \to T_Z^{(2)} \to \mathscr{O}_{\mathbb{P}^2}(-2) \to \mathfrak{R}_{Z_1}^{(1)} \to \mathfrak{R}_Z^{(2)} \to \mathscr{O}_{L^{\vee}} \to 0.$$

By the previous theorem $T_{Z_1} = \mathscr{O}_{\mathbb{P}^2}^2(-2)$. By hypothesis we have two short e.s. Then,

$$T_Z^{(2)} = \mathscr{O}_{\mathbb{P}^2}^3(-2).$$

Terao's conjecture for line arrangements

Conjecture. Assume that D_0 (or Z_0) is free with exponents (n, n+r) and that D (or Z) has the same combinatorics. Then Z is free w.e. (n, n+r).

Theorem. Terao's conjecture is true for arrangements of m lines such that $c_1(T_Z^{(2)}) = 3 - m$ and $c_2(T_Z^{(2)}) = {m-3 \choose 2}$.

Proof. These Chern classes implies that D does no contain any quadruple points. Then, it's a consequence of a theorem proved by W-Y¹.

¹Wakefield, Yuzvinsky: Derivations of an effective divisor on the complex projective line. Trans. Amer. Math. Soc., 2007

Terao's conjecture for line arrangements. Link between d+2 multiple points and exponents

Denote by $t_{d+2,L}$ the number (counted with multiplicity) of d+2 multiple points of D living on L, where L is a line of the arrangement.

Theorem. Assume that D has the combinatorics of a d-free arrangement w.e. (a_1, \ldots, a_{d+1}) . Then, for any line of the arrangement,

$$t_{d+2,L} \ge \min\{a_i | 1 \le i \le d+1\} - 1.$$

Proof. Let $x \in Z$ corresponding to the line L_x of the arrangement. Send the following exact sequence

$$0 \to \mathcal{I}_Z(d) \to \mathcal{I}_{Z\setminus\{x\}}(d) \to \mathscr{O}_x \to 0$$

on the other side.

Questions

- (1) Characterize arrangements that are d-free for any d.
- (2) Terao's conjecture for d-free arrangements, any $d \ge 1$.
- (3) Terao's conjecture for d-free arrangements, one $d \ge 1$.
- (4) Does the splitting of $T_Z^{(d)}$ depends on curves of degree d through subsets of points of Z?
- (5) Torelli problem for the sheaves $T_Z^{(d)}$.