Quantum symmetry in homological representations of braid groups and applications

Toshitake Kohno

The University of Tokyo

Alba Iulia, June 2013
Quantum symmetry in representations of braid groups

Homological representations of braid groups

Hypergeometric integrals

Monodromy of KZ connection

Drinfeld-K. Theorem

Representations of braid groups via quantum groups
Homological representations
 - Bigelow, Krammer (2000) “Braid groups are linear”
Plan

Homological representations
 – Bigelow, Krammer (2000) “Braid groups are linear”
Relation to KZ connection (comparison theorem)
Plan

- Homological representations
 - Bigelow, Krammer (2000) “Braid groups are linear”
- Relation to KZ connection (comparison theorem)
- Quantum symmetry in homological representations
Homological representations
 – Bigelow, Krammer (2000) “Braid groups are linear”
Relation to KZ connection (comparison theorem)
Quantum symmetry in homological representations
Space of conformal blocks and Gauss-Manin connection
Homological representations
 – Bigelow, Krammer (2000) “Braid groups are linear”
Relation to KZ connection (comparison theorem)
Quantum symmetry in homological representations
Space of conformal blocks and Gauss-Manin connection
Homological representations and dual Garside structures
Plan

- Homological representations
 - Bigelow, Krammer (2000) “Braid groups are linear”
- Relation to KZ connection (comparison theorem)
- Quantum symmetry in homological representations
- Space of conformal blocks and Gauss-Manin connection
- Homological representations and dual Garside structures
- Categorification of KZ connection
\(\mathcal{F}_n(X) : \) configuration space of ordered distinct \(n \) points in \(X \).

\[
\mathcal{F}_n(X) = \{(x_1, \cdots, x_n) \in X^n \mid x_i \neq x_j \text{ if } i \neq j\},
\]

\[
\mathcal{C}_n(X) = \mathcal{F}_n(X)/\mathfrak{S}_n
\]
Configuration spaces

\(\mathcal{F}_n(X) \): configuration space of ordered distinct \(n \) points in \(X \).

\[
\mathcal{F}_n(X) = \{ (x_1, \ldots, x_n) \in X^n ; x_i \neq x_j \text{ if } i \neq j \},
\]

\[
\mathcal{C}_n(X) = \mathcal{F}_n(X)/\mathfrak{S}_n
\]

Suppose \(X = D \) (two dimensional disc).

\[
\pi_1(\mathcal{F}_n(X)) = P_n, \quad \pi_1(\mathcal{C}_n(X)) = B_n
\]
Fix $P = \{(1, 0), \cdots, (n, 0)\} \subset D$. $\Sigma = D \setminus P$

\[F_{n,m}(D) = F_m(\Sigma), \quad C_{n,m}(D) = F_m(\Sigma)/\mathfrak{S}_m \]
$H_1(C_{n,m}(D); \mathbb{Z}) \cong \mathbb{Z}^\oplus n \oplus \mathbb{Z}$
Consider the homomorphism

\[\alpha : H_1(C_{n,m}(D); \mathbb{Z}) \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \]

defined by \(\alpha(x_1, \cdots, x_n, y) = (x_1 + \cdots + x_n, y) \).
Consider the homomorphism

\[\alpha : \text{H}_1(C_{n,m}(D); \mathbb{Z}) \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \]

defined by \(\alpha(x_1, \cdots, x_n, y) = (x_1 + \cdots + x_n, y) \).

Composing with the abelianization map

\[\pi_1(C_{n,m}(D), x_0) \rightarrow \text{H}_1(C_{n,m}(D); \mathbb{Z}) \],

we obtain the homomorphism

\[\beta : \pi_1(C_{n,m}(D), x_0) \longrightarrow \mathbb{Z} \oplus \mathbb{Z}. \]

\[\pi : \tilde{C}_{n,m}(D) \rightarrow C_{n,m}(D) : \text{the covering corresponding to Ker } \beta. \]
Homological representations

\[H_\ast(\tilde{C}_{n,m}(D); \mathbb{Z}) \] considered to be a \(\mathbb{Z}[\mathbb{Z} \oplus \mathbb{Z}] \)-module by deck transformations.

Express \(\mathbb{Z}[\mathbb{Z} \oplus \mathbb{Z}] \) as the ring of Laurent polynomials \(R = \mathbb{Z}[q^{\pm 1}, t^{\pm 1}] \).

\[H_{n,m} = H_m(\tilde{C}_{n,m}(D); \mathbb{Z}) \]
$H_*(\tilde{C}_{n,m}(D); \mathbb{Z})$ considered to be a $\mathbb{Z}[\mathbb{Z} \oplus \mathbb{Z}]$-module by deck transformations.

Express $\mathbb{Z}[\mathbb{Z} \oplus \mathbb{Z}]$ as the ring of Laurent polynomials $R = \mathbb{Z}[q^{\pm 1}, t^{\pm 1}]$.

$$H_{n,m} = H_m(\tilde{C}_{n,m}(D); \mathbb{Z})$$

$H_{n,m}$ is a free R-module of rank

$$d_{n,m} = \binom{m + n - 2}{m}.$$

$B_n \rightarrow \text{Aut}_R H_{n,m} : \text{LKB representations } (m > 1)$
\(g \): complex semi-simple Lie algebra.
\(\{I_\mu\} \): orthonormal basis of \(g \) w.r.t. Killing form.
\(\Omega = \sum_\mu I_\mu \otimes I_\mu \)
\(r_i : g \to \text{End}(V_i) \), \(1 \leq i \leq n \) representations.
\mathfrak{g} : complex semi-simple Lie algebra.
$\{I_\mu\} : \text{orthonormal basis of } \mathfrak{g} \text{ w.r.t. Killing form.}$

$\Omega = \sum_\mu I_\mu \otimes I_\mu$

$r_i : \mathfrak{g} \rightarrow \text{End}(V_i), \, 1 \leq i \leq n \text{ representations.}$

$\Omega_{ij} : \text{the action of } \Omega \text{ on the } i\text{-th and } j\text{-th components of } V_1 \otimes \cdots \otimes V_n.$

$$\omega = \frac{1}{\kappa} \sum_{i,j} \Omega_{ij} d \log(z_i - z_j), \quad \kappa \in \mathbb{C} \setminus \{0\}$$

ω defines a flat connection for a trivial vector bundle over the configuration space $X_n = \mathcal{F}_n(\mathbb{C})$ with fiber $V_1 \otimes \cdots \otimes V_n$ since we have

$$\omega \wedge \omega = 0$$
As the holonomy we have representations

$$\theta_\kappa : P_n \rightarrow GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_\kappa : B_n \rightarrow GL(V^\otimes n).$$
As the holonomy we have representations

\[\theta_\kappa : P_n \to GL(V_1 \otimes \cdots \otimes V_n). \]

In particular, if \(V_1 = \cdots = V_n = V \), we have representations of braid groups

\[\theta_\kappa : B_n \to GL(V^\otimes n). \]

We shall express the horizontal sections of the KZ connection : \(d\varphi = \omega \varphi \) in terms of homology with coefficients in local system homology on the fiber of the projection map

\[\pi : X_{m+n} \longrightarrow X_n. \]

\(X_{n,m} : \text{fiber of } \pi, \quad Y_{n,m} = X_{n,m}/\mathfrak{S}_m \)
Representations of $sl_2(\mathbb{C})$

$g = sl_2(\mathbb{C})$ has a basis

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

$\lambda \in \mathbb{C}$

M_λ: Verma module of $sl_2(\mathbb{C})$ with highest weight vector v such that

$$Hv = \lambda v, \quad Ev = 0$$

M_λ is spanned by

$$v, Fv, F^2v, \ldots$$
\[\Lambda = (\lambda_1, \cdots, \lambda_n) \in \mathbb{C}^n, \quad |\Lambda| = \lambda_1 + \cdots + \lambda_n \]

Consider the tensor product \(M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} \).
Spece of null vectors

\[\Lambda = (\lambda_1, \cdots, \lambda_n) \in \mathbb{C}^n, \quad |\Lambda| = \lambda_1 + \cdots + \lambda_n \]

Consider the tensor product \(M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} \).

\(m \) : non-negative integer

\[W[|\Lambda| - 2m] = \{ x \in M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} ; \ Hx = (|\Lambda| - 2m)x \} \]
$\Lambda = (\lambda_1, \cdots, \lambda_n) \in \mathbf{C}^n$, \quad \vert \Lambda \vert = \lambda_1 + \cdots + \lambda_n$

Consider the tensor product $M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n}$.

m: non-negative integer

$$W[\vert \Lambda \vert - 2m] = \{ x \in M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} ; \; Hx = (\vert \Lambda \vert - 2m)x \}$$

The space of null vectors is defined by

$$N[\vert \Lambda \vert - 2m] = \{ x \in W[\vert \Lambda \vert - 2m] ; \; Ex = 0 \}.$$
The space of null vectors

\[\Lambda = (\lambda_1, \cdots, \lambda_n) \in \mathbb{C}^n, \quad |\Lambda| = \lambda_1 + \cdots + \lambda_n \]

Consider the tensor product \(M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} \).

\(m \) : non-negative integer

\[W[|\Lambda| - 2m] = \{ x \in M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} ; Hx = (|\Lambda| - 2m)x \} \]

The space of null vectors is defined by

\[N[|\Lambda| - 2m] = \{ x \in W[|\Lambda| - 2m] ; Ex = 0 \}. \]

The KZ connection \(\omega \) commutes with the diagonal action of \(g \) on \(M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} \), hence it acts on the space of null vectors \(N[|\Lambda| - 2m] \).

The monodromy of KZ connection

\[\theta_{k,\lambda} : P_n \longrightarrow \text{Aut} \ N[|\Lambda| - 2m] \]
We fix a complex number λ and consider the case $\lambda_1 = \cdots = \lambda_n = \lambda$.

$$N[n\lambda - 2m] \subset M_\lambda^\otimes n.$$

Theorem

There exists an open dense subset U in $(\mathbb{C}^*)^2$ such that for $(\lambda, \kappa) \in U$ the homological representation $\rho_{n,m}$ with the specialization

$$q = e^{-2\pi \sqrt{-1}\lambda/\kappa}, \quad t = e^{2\pi \sqrt{-1}/\kappa}$$

is equivalent to the monodromy representation of the KZ connection $\theta_{\lambda,\kappa}$ with values in the space of null vectors

$$N[n\lambda - 2m] \subset M_\lambda^\otimes n.$$
Local system over the configuration space

\[\pi : X_{n+m} \to X_n : \text{projection defined by} \]
\[(z_1, \cdots, z_n, t_1, \cdots, t_m) \mapsto (z_1, \cdots, z_n). \]
\[X_{n,m} : \text{fiber of } \pi. \]

\[\Phi = \prod_{1 \leq i < j \leq n} (z_i - z_j)^{\frac{\lambda_i \lambda_j}{\kappa}} \prod_{1 \leq i \leq m, 1 \leq \ell \leq n} (t_i - z_\ell)^{-\frac{\lambda_\ell}{\kappa}} \times \prod_{1 \leq i < j \leq m} (t_i - t_j)^{\frac{2}{\kappa}} \]

(multi-valued function on \(X_{n+m} \)).
Consider the local system \(\mathcal{L} \) associated with \(\Phi \).
Solutions to KZ equation

Notation:
$W[|\Lambda| - 2m]$ has a basis

$$F^Jv = F^{j_1}v_{\lambda_1} \otimes \cdots F^{j_n}v_{\lambda_n}$$

with $|J| = j_1 + \cdots + j_n = m$ and $v_{\lambda_j} \in \mathcal{M}_{\lambda_j}$ the highest weight vector.
Solutions to KZ equation

Notation:
$W[|\Lambda| - 2m]$ has a basis

$$F^J v = F^{j_1} v_{\lambda_1} \otimes \cdots \otimes F^{j_n} v_{\lambda_n}$$

with $|J| = j_1 + \cdots + j_n = m$ and $v_{\lambda_j} \in M_{\lambda_j}$ the highest weight vector.

Theorem (Schechtman-Varchenko...)

The hypergeometric integral

$$\sum_{|J|=m} \left(\int_{\Delta} \Phi R_J(z, t) dt_1 \wedge \cdots \wedge dt_m \right) F^J v$$

lies in $N[|\Lambda| - 2m]$ and is a solution of the KZ equation, where Δ is a cycle in $H_m(Y_{n,m}, \mathcal{L}^*)$.

Toshitake Kohno
Quantum symmetry in homological representations
Homology basis

For generic λ, κ,

$$H_j(Y_{n,m}, L^*) \cong 0, \quad j \neq m$$

and we have an isomorphism

$$H_m(Y_{n,m}, L^*) \cong H^l_{m}(Y_{n,m}, L^*)$$

(homology with locally finite chains)
For generic λ, κ,

$$H_j(Y_{n,m}, L^*) \cong 0, \quad j \neq m$$

and we have an isomorphism

$$H_m(Y_{n,m}, L^*) \cong H_{m}^{lf}(Y_{n,m}, L^*)$$

(homology with locally finite chains)

The above homology is spanned by bounded chambers.

bounded chambers : basis of twisted homology

(the case $n = 3, m = 2$).
Homology basis (continued)

For non-negative integers m_1, \cdots, m_{n-1} satisfying

$$m_1 + \cdots + m_{n-1} = m$$

we define a bounded chamber $\Delta_{m_1, \cdots, m_{n-1}}$ in \mathbb{R}^m by

$$1 < t_1 < \cdots < t_{m_1} < 2$$
$$2 < t_{m_1+1} < \cdots < t_{m_1+m_2} < 3$$
$$\cdots$$
$$n - 1 < t_{m_1+\cdots+m_{n-2}+1} + \cdots + t_m < n.$$

Put $M = (m_1, \cdots, m_{n-1})$ and write Δ_M for $\Delta_{m_1, \cdots, m_{n-1}}$. The bounded chamber Δ_M defines a homology class $[\Delta_M] \in H^l_m(X_{n,m}, \mathcal{L})$ and its image $\overline{\Delta_M} = \pi_{n,m}(\Delta_M)$ defines a homology class $[\overline{\Delta_M}] \in H^l_m(Y_{n,m}, \mathcal{L})$. Under a genericity condition $[\overline{\Delta_M}]$ form a basis of $H^l_m(Y_{n,m}, \mathcal{L})$.
Now the fundamental solutions of the KZ equation with values in \(N[n\lambda - 2m] \) is give by the matrix of the form

\[
\begin{pmatrix}
\int & \omega_{M'} \\
\tilde{\Delta}_{M} &
\end{pmatrix}
\]

with \(M = (m_1, \cdots, m_{n-1}) \) and \(M' = (m'_1, \cdots, m'_{n-1}) \) such that
\(m_1 + \cdots + m_{n-1} = m \) and \(m'_1 + \cdots + m'_{n-1} = m \). with \(\omega_{M'} \) a multivalued \(m \)-form on \(X_{n,m} \).

The column vectors of the above matrix form a basis of the solutions of the KZ equation with values in \(N[n\lambda - 2m] \). Thus the representation \(r_{n,m} : B_n \to \text{Aut} \ H_m(Y_{n,m}, \mathcal{L}^*) \) is equivalent to the action of \(B_n \) on the solutions of the KZ equation with values in \(N[n\lambda - 2m] \).
Quantum symmetry

Theorem

There is an isomorphism

\[N_h[\lambda n - 2m] \cong H_m(Y_{n,m}, \mathcal{L}^*) \]

which is equivariant with respect to the action of the braid group \(B_n \), where \(N_h[\lambda n - 2m] \) is the space of null vectors for the corresponding \(U_h(\mathfrak{g}) \)-module with \(h = 1/\kappa \).
Quantum symmetry for twisted chains

There is the following correspondence:

twisted multi-chains \iff weight vectors $F^{j_1}v_1 \otimes \cdots \otimes F^{j_n}v_n$

twisted boundary operator \iff the action of E

$$H_m(Y_{n,m}, \mathcal{L}^*) \iff N_h[\lambda n - 2m]$$
Conformal Field Theory

\((\Sigma, p_1, \cdots, p_n)\) : Riemann surface with marked points

\(\lambda_1, \cdots, \lambda_n\) : level \(K\) highest weights
Wess-Zumino-Witten model

Conformal Field Theory

\((\Sigma, p_1, \cdots, p_n)\) : Riemann surface with marked points
\(\lambda_1, \cdots, \lambda_n : \) level \(K\) highest weights
\(\mathcal{H}_\Sigma(p, \lambda) : \text{space of conformal blocks}\)

vector space spanned by holomorphic parts of the WZW partition function.
(Σ, p₁, · · · , pₙ) : Riemann surface with marked points
λ₁, · · · , λₙ : level K highest weights
$\mathcal{H}_Σ(p, λ)$: space of conformal blocks
vector space spanned by holomorphic parts of the WZW partition function.
Geometry : vector bundle over the moduli space of Riemann surfaces with n marked points with projectively flat connection.
\[\hat{g} = g \otimes \mathbb{C}((\xi)) \oplus \mathbb{C}c : \text{affine Lie algebra} \text{ with commutation relation} \]

\[[X \otimes f, Y \otimes g] = [X, Y] \otimes fg + \text{Res}_{\xi=0} df g \langle X, Y \rangle c \]

\(K \) a positive integer (level)
\[\hat{g} = \mathcal{N}_+ \oplus \mathcal{N}_0 \oplus \mathcal{N}_- \]
\(c \) acts as \(K \cdot \text{id.} \).
\[\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}((\xi)) \oplus \mathbb{C}c : \text{affine Lie algebra} \text{ with commutation relation} \]

\[[X \otimes f, Y \otimes g] = [X, Y] \otimes fg + \text{Res}_{\xi=0} df \ g \left\langle X, Y \right\rangle c \]

\(K \) a positive integer (level)
\(\hat{\mathfrak{g}} = \mathcal{N}_+ \oplus \mathcal{N}_0 \oplus \mathcal{N}_- \)
\(c \) acts as \(K \cdot \text{id.} \)

\(\lambda : \text{an integer with } 0 \leq \lambda \leq K \)
\(\mathcal{H}_\lambda : \text{irreducible quotient of } \mathcal{M}_\lambda \text{ called the integrable highest weight modules.} \)
Geometric background

G: the Lie group $SL(2, \mathbb{C})$

$L_G = \text{Map}(S^1, G)$: loop group

$L \to LG$: complex line bundle with $c_1(L) = K$

The affine Lie algebra $\hat{\mathfrak{g}}$ acts on the space of sections $\Gamma(L)$.

The integrable highest weight modules H_λ, $0 \leq \lambda \leq K$, appear as sub-representations.

As the infinitesimal version of the action of the central extension of $\text{Diff}(S^1)$, the Virasoro Lie algebra acts on H_λ.

Toshitake Kohno

Quantum symmetry in homological representations
G: the Lie group $SL(2, \mathbb{C})$

$L_G = \text{Map}(S^1, G)$: loop group

$L \to LG$: complex line bundle with $c_1(L) = K$

The affine Lie algebra $\hat{\mathfrak{g}}$ acts on the space of sections $\Gamma(L)$.
The integrable highest weight modules \mathcal{H}_λ, $0 \leq \lambda \leq K$, appears as sub representations.

As the infinitesimal version of the action of the central extension of $	ext{Diff}(S^1)$ the Virasoro Lie algebra acts on \mathcal{H}_λ.
Suppose $0 \leq \lambda_1, \cdots, \lambda_n \leq K$.

$p_1, \cdots, p_n \in \Sigma$

Assign highest weights $\lambda_1, \cdots, \lambda_n$ to p_1, \cdots, p_n.

\mathcal{H}_j : irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.
Suppose \(0 \leq \lambda_1, \cdots, \lambda_n \leq K \).

\(p_1, \cdots, p_n \in \Sigma \)

Assign highest weights \(\lambda_1, \cdots, \lambda_n \) to \(p_1, \cdots, p_n \).

\(\mathcal{H}_j \) : irreducible representations of \(\hat{\mathfrak{g}} \) with highest weight \(\lambda_j \) at level \(K \).

\(\mathcal{M}_p \) denotes the set of meromorphic functions on \(\Sigma \) with poles at most at \(p_1, \cdots, p_n \).
Suppose $0 \leq \lambda_1, \cdots, \lambda_n \leq K$.
$p_1, \cdots, p_n \in \Sigma$
Assign highest weights $\lambda_1, \cdots, \lambda_n$ to p_1, \cdots, p_n.
\mathcal{H}_j: irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

\mathcal{M}_p denotes the set of meromorphic functions on Σ with poles at most at p_1, \cdots, p_n.

The space of conformal blocks is defined as

$$\mathcal{H}_\Sigma(p, \lambda) = (\mathcal{H}_{\lambda_1} \otimes \cdots \otimes \mathcal{H}_{\lambda_n})/(\mathfrak{g} \otimes \mathcal{M}_p)$$

where $\mathfrak{g} \otimes \mathcal{M}_p$ acts diagonally via Laurent expansions at p_1, \cdots, p_n.
Conformal block bundle

\[\Sigma_g : \text{Riemann surface of genus } g \]
\[p_1, \cdots, p_n : \text{marked points on } \Sigma_g \]
Fix the highest weights \(\lambda_1, \cdots, \lambda_n \).
Conformal block bundle

\[\Sigma_g : \text{Riemann surface of genus } g \]
\[p_1, \cdots, p_n : \text{marked points on } \Sigma_g \]
Fix the highest weights \(\lambda_1, \cdots, \lambda_n \).

The union

\[\bigcup_{p_1, \cdots, p_n} \mathcal{H}_{\Sigma_g}(p, \lambda) \]

for any complex structures on \(\Sigma_g \) forms a vector bundle on \(\mathcal{M}_{g,n} \),
the moduli space of Riemann surfaces of genus \(g \) with \(n \) marked points.
Σ

\text{g} \: \text{Riemann surface of genus } g \\
p_1, \cdots, p_n \: \text{marked points on } \Sigma_g \\
\text{Fix the highest weights } \lambda_1, \cdots, \lambda_n.

\text{The union} \\
\bigcup_{p_1, \cdots, p_n} \mathcal{H}_{\Sigma_g} (p, \lambda)

\text{for any complex structures on } \Sigma_g \text{ forms a vector bundle on } \mathcal{M}_{g,n}, \\
\text{the moduli space of Riemann surfaces of genus } g \text{ with } n \text{ marked points.}

\text{This vector bundle is called the } \text{conformal block bundle} \text{ and is } \\
\text{equipped with a natural } \text{projectively flat connection}. \text{ The} \\
\text{holonomy representation of the mapping class group is called the} \\
\text{quantum representation.}
$\mathcal{H}(p, \lambda)$ is identified with a quotient space of $N[\lambda_{n+1}]$ and there is a map

$$\rho : \mathcal{H}(p, \lambda) \rightarrow H^m(\Omega^*(Y_{n,m}), \nabla).$$

so that the map

$$\phi : H_m(Y_{n,m}, L^*) \rightarrow \mathcal{H}(p, \lambda)^*$$

defined by

$$\langle \phi(c), w \rangle = \int_c \rho(w)$$

is surjective with $\kappa = K + 2$.

Toshitake Kohno
Quantum symmetry in homological representations
Consider the natural map
\[\alpha : H_m(Y_{n,m}, \mathcal{L}^*) \to H_{mf}^l(Y_{n,m}, \mathcal{L}^*) \]
and put \(\text{Im}(\alpha) = H_m^l(Y_{n,m}, \mathcal{L}^*)_{\text{reg}} \) (the set of regularizable cycles).
Consider the natural map

\[\alpha : H_m(Y_{n,m}, L^*) \rightarrow H_{m}^l(Y_{n,m}, L^*) \]

and put \(\text{Im}(\alpha) = H_{m}^l(Y_{n,m}, L^*)_{\text{reg}} \) (the set of regularizable cycles).

Theorem

\(\phi \) induces an isomorphism

\[H_{m}^l(Y_{n,m}, L^*)_{\text{reg}} \cong \mathcal{H}(p, \lambda)^* \]

equivariant under the action of braids.
Fusion rule

In the case $n = 2$ there is an isomorphism.

$$H_{m}^{lf}(Y_{2,m}, \mathcal{L}^{*})_{reg} \cong \mathcal{H}(p_{1}, p_{2}, p_{3}; \lambda_{1}, \lambda_{2}, \lambda_{3})^{*}.$$

The above homology group $H_{m}^{lf}(Y_{2,m}, \mathcal{L}^{*})_{reg}$ is isomorphic to \mathbb{C} if the quantum Clebsch-Gordan condition

$$|\lambda_{1} - \lambda_{2}| \leq \lambda_{3} \leq \lambda_{1} + \lambda_{2}$$

$$\lambda_{1} + \lambda_{2} + \lambda_{3} \in 2\mathbb{Z}$$

$$\lambda_{1} + \lambda_{2} + \lambda_{3} \leq 2K$$

is satisfied and is isomorphic to 0 otherwise.
\(\mathcal{L} : \) rank 1 local system over \(Y_{n,m} \)

\[
m = \frac{1}{2}(\lambda_1 + \cdots + \lambda_n - \lambda_{n+1})
\]

\(\mathcal{H}_{n,m} : \) local system over \(X_n \) with fiber \(H_m(Y_{n,m}, \mathcal{L}^*) \)

Theorem

There is surjective bundle map to the conformal block bundle

\[
\mathcal{H}_{n,m} \longrightarrow \bigcup \mathcal{H}^*_{\mathbb{C}P^1}(p, \lambda)
\]

via hypergeometric integrals. The KZ connection is interpreted as Gauss-Manin connection.

cf. Looijenga’s work
The bounded chamber basis Δ_M plays an important role in detecting the dual Garside structure from the homological representation with respect to this basis.

Theorem (T. Ito and B. Wiest)

The dual Garside length of a braid word β with respect to the Birman-Ko-Lee band generators is expressed as

$$\max \text{ degree}_q \rho_{n,m}(\beta) - \min \text{ degree}_q \rho_{n,m}(\beta).$$
There is a work in progress to construct 2-holonomy of KZ connection for braid cobordism based on the 2-connection investigated by L. Cirio and J. Martins of the form

\[A = \sum_{i<j} \omega_{ij} \Omega_{ij} \]

\[B = \sum_{i<j<k} (\omega_{ij} \wedge \omega_{ik} P_{jik} + \omega_{ij} \wedge \omega_{jk} P_{ijk}), \]

where \(A \) has values in the algebra of 2-chord diagrams, a categorification of the algebra of horizontal chord diagrams and

\[\partial B = dA + \frac{1}{2} A \wedge A. \]