Braid cohomology, principal congruence subgroups and geometric representations

Filippo Callegaro
Università di Pisa

joint work with
Fred Cohen (Univ. Rochester)
Mario Salvetti (Univ. Pisa)

Joint AMS-RMS Meeting
Alba Iulia, June 29th 2013
The braid group

Definition

The n-th braid group B_n is the fundamental group of the space of unordered n-tuples of distinct points in \mathbb{C}.

$$B_n := \pi_1 \left(\mathbb{C}^n \setminus \bigcup_{i<j} \{z_i = z_j\} \bigg/ \mathfrak{S}_n \right)$$
The braid group

Definition

The n-th braid group B_n is the fundamental group of the space of unordered n-tuples of distinct points in \mathbb{C}.

$$B_n := \pi_1 \left(\frac{\mathbb{C}^n \setminus \bigcup_{i<j} \{ z_i = z_j \}}{\mathfrak{S}_n} \right)$$

This is a braid on 4 strands.
The standard presentation of the braid group

The braid group on \(n + 1 \) strands has a presentation given by generators and relations:

\[
\langle \sigma_1, \ldots, \sigma_n \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \rangle.
\]
The standard presentation of the braid group

The braid group on \(n + 1 \) strands has a presentation given by generators and relations:

\[
\langle \sigma_1, \ldots, \sigma_n \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| > 1 \rangle.
\]
The standard presentation of the braid group

The braid group on $n + 1$ strands has a presentation given by generators and relations:

$$\langle \sigma_1, \ldots, \sigma_n \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for } i = 1, \ldots, n - 1 \rangle.$$
The standard presentation of the braid group

The braid group on \(n + 1 \) strands has a presentation given by generators and relations:

\[
\left\langle \sigma_1, \ldots, \sigma_n \left| \begin{array}{c}
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \\
\sigma_i \sigma_j = \sigma_j \sigma_i \\
\text{for } i = 1, \ldots, n - 1 \\
\text{for } |i - j| > 1
\end{array} \right. \right\rangle.
\]
The standard presentation of the braid group

The braid group on $n + 1$ strands has a presentation given by generators and relations:

$$\langle \sigma_1, \ldots, \sigma_n \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad \text{for } i = 1, \ldots, n - 1 $$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{for } |i - j| > 1 \rangle.$$

The generator σ_i corresponds to the twist

```
\[ \begin{array}{cccc}
| & | & \cdots & | \\
1 & 2 & i & i+1 \\
\end{array} \]
```

\[\begin{array}{cccc}
| & | & \cdots & | \\
n & n+1 & | & | \\
\end{array} \]
Dehn twist

Let S be an oriented surface and a a simple closed curve in S. We call D_a the Dehn twist along a.

If two simple curves a, b do not intersect, the corresponding Dehn twists commute $D_a D_b = D_b D_a$. When they intersect in one point, the associated Dehn twists satisfy the braid relation $D_a D_b D_a = D_b D_a D_b$.
Let S be an oriented surface and a a simple closed curve in S. We call D_a the Dehn twist along a.

If two simple curves a, b do not intersect, the corresponding Dehn twists commute $D_a D_b = D_b D_a$. When they intersect in one point, the associated Dehn twists satisfy the braid relation $D_a D_b D_a = D_b D_a D_b$.

Filippo Callegaro (Univ. Pisa)
Let S be an oriented surface and a a simple closed curve in S. We call D_a the Dehn twist along a.

If two simple curves a, b do not intersect, the corresponding Dehn twists commute: $D_a D_b = D_b D_a$. When they intersect in one point, the associated Dehn twists satisfy the braid relation: $D_a D_b D_a = D_b D_a D_b$.
Let S be an oriented surface and a a simple closed curve in S. We call D_a the Dehn twist along a.

If two simple curves a, b do not intersect, the corresponding Dehn twists commute $D_aD_b = D_bD_a$. When they intersect in one point, the associated Dehn twists satisfy the braid relation $D_aD_bD_a = D_bD_aD_b$.
Let $S_{g,n}$ be an oriented surface of genus g, with n boundary components.

Definition

We call $\text{MCG}(S_{g,n})$ the mapping class group of $S_{g,n}$, that is the group of isotopy classes of orientation preserving diffeomorphisms of $S_{g,n}$ that fix the boundary pointwise.
Let $S_{g,n}$ be an oriented surface of genus g, with n boundary components.

Definition

We call $MCG(S_{g,n})$ the mapping class group of $S_{g,n}$, that is the group of isotopy classes of orientation preserving diffeomorphisms of $S_{g,n}$ that fix the boundary pointwise.
Geometric representation

We can define standard geometric embeddings
\[\phi : B_{2g+1} \to \text{MCG}(S_{g,1}) \quad \text{and} \quad \phi : B_{2g+2} \to \text{MCG}(S_{g,2}) \]
mapping the standard braid generators to Dehn twist

and hence there is an action on the \(H_1 \) of the surface that preserves the intersection form.

\[B_{2g+1} \to \text{Aut}(H_1(S_{g,1}; \mathbb{Z}), < \cdot, \cdot >) = \text{Sp}_{2g}(\mathbb{Z}) \]
\[B_{2g+2} \to \text{Aut}(H_1(S_{g,2}; \mathbb{Z}), < \cdot, \cdot >) = \text{Sp}_{2g+1}(\mathbb{Z}) \]
Geometric representation

We can define standard geometric embeddings

$$\phi : B_{2g+1} \to MCG(S_{g,1})$$
and

$$\phi : B_{2g+2} \to MCG(S_{g,2})$$

mapping the standard braid generators to Dehn twist

and hence there is an action on the H_1 of the surface that preserves the intersection form.

$$B_{2g+1} \to Aut(H_1(S_{g,1}; \mathbb{Z}), < \cdot, \cdot >) = Sp_{2g}(\mathbb{Z})$$

$$B_{2g+2} \to Aut(H_1(S_{g,2}; \mathbb{Z}), < \cdot, \cdot >) = Sp_{2g+1}(\mathbb{Z})$$
We can define standard geometric embeddings \(\phi : B_{2g+1} \rightarrow MCG(S_{g,1}) \) and \(\phi : B_{2g+2} \rightarrow MCG(S_{g,2}) \) mapping the standard braid generators to Dehn twist and hence there is an action on the \(H_1 \) of the surface that preserves the intersection form.

\[
B_{2g+1} \rightarrow Aut(H_1(S_{g,1}; \mathbb{Z}), < \cdot , \cdot >) = Sp_{2g}(\mathbb{Z}) \\
B_{2g+2} \rightarrow Aut(H_1(S_{g,2}; \mathbb{Z}), < \cdot , \cdot >) = Sp_{2g+1}(\mathbb{Z})
\]
We can define standard geometric embeddings

\[\phi : B_{2g+1} \to MCG(S_{g,1}) \quad \text{and} \quad \phi : B_{2g+2} \to MCG(S_{g,2}) \]

mapping the standard braid generators to Dehn twist and hence there is an action on the \(H_1 \) of the surface that preserves the intersection form.

\[B_{2g+1} \to Aut(H_1(S_{g,1}; \mathbb{Z}), < \cdot, \cdot >) = Sp_{2g}(\mathbb{Z}) \]

\[B_{2g+2} \to Aut(H_1(S_{g,2}; \mathbb{Z}), < \cdot, \cdot >) = Sp_{2g+1}(\mathbb{Z}) \]
We can define standard geometric embeddings
\(\phi : B_{2g+1} \to MCG(S_g,1) \) and \(\phi : B_{2g+2} \to MCG(S_g,2) \) mapping the
standard braid generators to Dehn twist

and hence there is an action on the \(H_1 \) of the surface that
preserves the intersection form.

\[
B_{2g+1} \to Aut(H_1(S_g,1; \mathbb{Z}), < \cdot, \cdot >) = Sp_{2g}(\mathbb{Z})
\]

\[
B_{2g+2} \to Aut(H_1(S_g,2; \mathbb{Z}), < \cdot, \cdot >) = Sp_{2g+1}(\mathbb{Z})
\]
We can define standard geometric embeddings
\[\phi : B_{2g+1} \to MCG(S_g,1) \] and \[\phi : B_{2g+2} \to MCG(S_g,2) \] mapping the standard braid generators to Dehn twist and hence there is an action on the \(H_1 \) of the surface that preserves the intersection form.

\[B_{2g+1} \to Aut(H_1(S_g,1;\mathbb{Z}), <\cdot,\cdot>) = Sp_{2g}(\mathbb{Z}) \]
\[B_{2g+2} \to Aut(H_1(S_g,2;\mathbb{Z}), <\cdot,\cdot>) = Sp_{2g+1}(\mathbb{Z}) \]
Polynomial extension

The previous action naturally extends to the symmetric algebra with \mathbb{Z}-linear automorphisms that preserve the degree.

$$H_1(S_g, 1, \mathbb{Z})^* = \langle x_1, y_1, \ldots, x_g, y_g \rangle$$

$$M = \mathbb{Z}[x_1, y_1, \ldots, x_g, y_g]$$

$$B_{2g+1} \rightarrow Aut_\mathbb{Z}(\mathbb{Z}[x_1, y_1, \ldots, x_g, y_g])$$

(and analogous for B_{2g+2}). We are interested in the cohomology of braid groups with coefficients in this representation.
The previous action naturally extends to the symmetric algebra with \mathbb{Z}-linear automorphisms that preserve the degree.

$$H_1(S_g, 1, \mathbb{Z})^* = \langle x_1, y_1, \ldots, x_g, y_g \rangle$$

$$M = \mathbb{Z}[x_1, y_1, \ldots, x_g, y_g]$$

$$B_{2g+1} \rightarrow Aut_{\mathbb{Z}}(\mathbb{Z}[x_1, y_1, \ldots, x_g, y_g])$$

(and analogous for B_{2g+2}). We are interested in the cohomology of braid groups with coefficients in this representation.
The previous action naturally extends to the symmetric algebra with \(\mathbb{Z}\)-linear automorphisms that preserve the degree.

\[
H_1(S_g,1,\mathbb{Z})^* = \langle x_1, y_1, \ldots, x_g, y_g \rangle
\]

\[
M = \mathbb{Z}[x_1, y_1, \ldots, x_g, y_g]
\]

\[
B_{2g+1} \to Aut_\mathbb{Z}(\mathbb{Z}[x_1, y_1, \ldots, x_g, y_g])
\]

(and analogous for \(B_{2g+2}\)). We are interested in the cohomology of braid groups with coefficients in this representation.
Polynomial extension

The previous action naturally extends to the symmetric algebra with \(\mathbb{Z} \)-linear automorphisms that preserve the degree.

\[
H_1(S_{g,1}, \mathbb{Z})^* = \langle x_1, y_1, \ldots, x_g, y_g \rangle
\]

\[
M = \mathbb{Z}[x_1, y_1, \ldots, x_g, y_g]
\]

\[
B_{2g+1} \to \text{Aut}_\mathbb{Z}(\mathbb{Z}[x_1, y_1, \ldots, x_g, y_g])
\]

(and analogous for \(B_{2g+2} \)). We are interested in the cohomology of braid groups with coefficients in this representation.
Polynomial extension

The previous action naturally extends to the symmetric algebra with \(\mathbb{Z} \)-linear automorphisms that preserve the degree.

\[
H_1(S_g,1, \mathbb{Z})^* = \langle x_1, y_1, \ldots, x_g, y_g \rangle
\]

\[
M = \mathbb{Z}[x_1, y_1, \ldots, x_g, y_g]
\]

\[
B_{2g+1} \to Aut_{\mathbb{Z}}(\mathbb{Z}[x_1, y_1, \ldots, x_g, y_g])
\]

(and analogous for \(B_{2g+2} \)). We are interested in the cohomology of braid groups with coefficients in this representation.
Another point of view (in a special case)

Let T^2 be the 2-dimensional compact torus.

Definition

$Diff_+(T^2)$ is the group of orientation preserving diffeomorphisms of the torus and $Diff_0 T^2$ is the connected component of the identity.

We have the exact sequence

$$1 \to Diff_0(T^2) \to Diff_+(T^2) \to SL_2(\mathbb{Z}) \to 1$$

that induces the fibration of classifying spaces

$$BDiff_0(T^2) \hookrightarrow BDiff_+(T^2) \to BSL_2(\mathbb{Z})$$
Another point of view (in a special case)

Let T^2 be the 2-dimensional compact torus.

Definition

$\text{Diff}_+(T^2)$ is the group of orientation preserving diffeomorphisms of the torus and $\text{Diff}_0 T^2$ is the connected component of the identity.

We have the exact sequence

$$1 \to \text{Diff}_0 (T^2) \to \text{Diff}_+(T^2) \to SL_2(\mathbb{Z}) \to 1$$

that induces the fibration of classifying spaces

$$BDiff_0(T^2) \hookrightarrow BDiff_+(T^2) \to BSL_2(\mathbb{Z})$$
Another point of view (in a special case)

Let T^2 be the 2-dimensional compact torus.

Definition

$\text{Diff}_+(T^2)$ is the group of orientation preserving diffeomorphisms of the torus and $\text{Diff}_0 T^2$ is the connected component of the identity.

We have the exact sequence

$$1 \to \text{Diff}_0(T^2) \to \text{Diff}_+(T^2) \to \text{SL}_2(\mathbb{Z}) \to 1$$

that induces the fibration of classifying spaces

$$BDiff_0(T^2) \to BDiff_+(T^2) \to BSL_2(\mathbb{Z})$$
Another point of view (in a special case)

Let T^2 be the 2-dimensional compact torus.

Definition

$\text{Diff}_+(T^2)$ is the group of orientation preserving diffeomorphisms of the torus and $\text{Diff}_0 T^2$ is the connected component of the identity.

We have the exact sequence

$$1 \rightarrow \text{Diff}_0(T^2) \rightarrow \text{Diff}_+(T^2) \rightarrow \text{SL}_2(\mathbb{Z}) \rightarrow 1$$

that induces the fibration of classifying spaces

$$B\text{Diff}_0(T^2) \hookrightarrow B\text{Diff}_+(T^2) \rightarrow B\text{SL}_2(\mathbb{Z})$$
The inclusion $T^2 \hookrightarrow \text{Diff}_0(T^2)$ is an homotopy equivalence.

As a consequence we have the homotopy equivalences

$$B\text{Diff}_0(T^2) \simeq BT^2 \simeq (\mathbb{C}P^\infty)^2$$

and the cohomology of this space is

$$M := H^*(B\text{Diff}_0(T^2); \mathbb{Z}) = \mathbb{Z}[x, y]$$

where x, y are generators in degree 2. We call M^q the homogeneous component of M of degree q.

The group $SL_2(\mathbb{Z})$ acts on $\mathbb{Z}[x, y]$ extending the standard action on $\langle x, y \rangle$.

Theorem

The inclusion $T^2 \hookrightarrow \text{Diff}_0(T^2)$ is an homotopy equivalence.

As a consequence we have the homotopy equivalences

$$BDiff_0(T^2) \simeq BT^2 \simeq (\mathbb{C}P^\infty)^2$$

and the cohomology of this space is

$$M := H^*(BDiff_0(T^2); \mathbb{Z}) = \mathbb{Z}[x, y]$$

where x, y are generators in degree 2. We call M^q the homogeneous component of M of degree q.

The group $SL_2(\mathbb{Z})$ acts on $\mathbb{Z}[x, y]$ extending the standard action on $<x, y>$.
Homotopy equivalences

Theorem

The inclusion $T^2 \hookrightarrow \text{Diff}_0(T^2)$ is an homotopy equivalence.

As a consequence we have the homotopy equivalences

$$BDiff_0(T^2) \simeq BT^2 \simeq (\mathbb{C}P^\infty)^2$$

and the cohomology of this space is

$$M := H^*(BDiff_0(T^2); \mathbb{Z}) = \mathbb{Z}[x, y]$$

where x, y are generators in degree 2. We call M^q the homogeneous component of M of degree q.

The group $SL_2(\mathbb{Z})$ acts on $\mathbb{Z}[x, y]$ extending the standard action on $<x, y>$.
The inclusion $T^2 \hookrightarrow \text{Diff}_0(T^2)$ is an homotopy equivalence.

As a consequence we have the homotopy equivalences

$$BDiff_0(T^2) \simeq BT^2 \simeq (\mathbb{CP}^\infty)^2$$

and the cohomology of this space is

$$M := H^*\left(BDiff_0(T^2); \mathbb{Z}\right) = \mathbb{Z}[x, y]$$

where x, y are generators in degree 2. We call M^q the homogeneous component of M of degree q.

The group $SL_2(\mathbb{Z})$ acts on $\mathbb{Z}[x, y]$ extending the standard action on $\langle x, y \rangle$.
The inclusion \(T^2 \hookrightarrow \text{Diff}_0(T^2) \) is an homotopy equivalence.

As a consequence we have the homotopy equivalences

\[\text{BDiff}_0(T^2) \simeq BT^2 \simeq (\mathbb{CP}^\infty)^2 \]

and the cohomology of this space is

\[M := H^*(\text{BDiff}_0(T^2); \mathbb{Z}) = \mathbb{Z}[x, y] \]

where \(x, y \) are generators in degree 2. We call \(M^q \) the homogeneous component of \(M \) of degree \(q \).

The group \(\text{SL}_2(\mathbb{Z}) \) acts on \(\mathbb{Z}[x, y] \) extending the standard action on \(\langle x, y \rangle \).
From the fibration $BDiff_0(T^2) \hookrightarrow BDiff_+(T^2) \to BSL_2(\mathbb{Z})$ we get the Serre spectral sequence

$$E_2^{i,j} = H^i(SL_2(\mathbb{Z}); M^j) \Rightarrow H^{i+j}(BDiff_+(T^2); \mathbb{Z})$$

Theorem

The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product

$\mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$.

Corollary

The spectral sequence above collapses if we tensor the coefficients by a ring R such that 2 and 3 are invertible in R.
The spectral sequence

From the fibration $BDiff_0(T^2) \hookrightarrow BDiff_+(T^2) \rightarrow BSL_2(\mathbb{Z})$ we get the Serre spectral sequence

$$E_2^{i,j} = H^i(SL_2(\mathbb{Z}); M^j) \Rightarrow H^{i+j}(BDiff_+(T^2); \mathbb{Z})$$

Theorem

The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product

$$\mathbb{Z}_4 \ast_{\mathbb{Z}_2} \mathbb{Z}_6.$$

Corollary

The spectral sequence above collapses if we tensor the coefficients by a ring R such that 2 and 3 are invertible in R.

Filippo Callegaro (Univ. Pisa)
The spectral sequence

From the fibration \(BDiff_0(T^2) \hookrightarrow BDiff_+(T^2) \rightarrow BSL_2(\mathbb{Z}) \) we get the Serre spectral sequence

\[E_2^{i,j} = H^i(SL_2(\mathbb{Z}); M^j) \Rightarrow H^{i+j}(BDiff_+(T^2); \mathbb{Z}) \]

Theorem

The group \(SL_2(\mathbb{Z}) \) is isomorphic to the amalgamated product

\[\mathbb{Z}_4 \ast_{\mathbb{Z}_2} \mathbb{Z}_6. \]

Corollary

The spectral sequence above collapses if we tensor the coefficients by a ring \(R \) such that 2 and 3 are invertible in \(R \).
The spectral sequence

From the fibration $BDiff_0(T^2) \hookrightarrow BDiff_+(T^2) \to BSL_2(\mathbb{Z})$ we get the Serre spectral sequence

$$E_2^{i,j} = H^i(SL_2(\mathbb{Z}); M^j) \Rightarrow H^{i+j}(BDiff_+(T^2); \mathbb{Z})$$

Theorem

The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product

$$\mathbb{Z}_4 \ast_{\mathbb{Z}_2} \mathbb{Z}_6.$$

Corollary

The spectral sequence above collapses if we tensor the coefficients by a ring R such that 2 and 3 are invertible in R.
A central extension

There is an extension

$$1 \to \mathbb{Z} \to B_3 \xrightarrow{\psi} SL_2(\mathbb{Z}) \to 1.$$

defined by $\psi: \sigma_1 \mapsto \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, $\psi: \sigma_2 \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

The kernel of ψ is the index 2 subgroup of the center of B_3. The map ψ induces an action of B_3 on $(\mathbb{C}P^\infty)^2$. Define the Borel constructions $X := E_{B_3} \times_{B_3} (\mathbb{C}P^\infty)^2$ that fits into the fibration

$$(\mathbb{C}P^\infty)^2 \hookrightarrow X \twoheadrightarrow BB_3.$$

The associated Serre spectral sequence is given by

$$E_2^{i,j} = H^i(B_3; M^j) \Rightarrow H^{i+j}(X; \mathbb{Z}).$$
A central extension

There is an extension

\[1 \to \mathbb{Z} \to B_3 \xrightarrow{\psi} SL_2(\mathbb{Z}) \to 1. \]

defined by \(\psi : \sigma_1 \mapsto \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \psi : \sigma_2 \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \)

The kernel of \(\psi \) is the index 2 subgroup of the center of \(B_3 \).

The map \(\psi \) induces an action of \(B_3 \) on \((\mathbb{C}P^{\infty})^2\). Define the Borel constructions \(X := EB_3 \times_{B_3} (\mathbb{C}P^{\infty})^2 \) that fits into the fibration

\[(\mathbb{C}P^{\infty})^2 \hookrightarrow X \to BB_3. \]

The associated Serre spectral sequence is give by

\[E_2^{i,j} = H^i(B_3; M^j) \Rightarrow H^{i+j}(X; \mathbb{Z}). \]
A central extension

There is an extension

\[1 \to \mathbb{Z} \to B_3 \xrightarrow{\psi} SL_2(\mathbb{Z}) \to 1. \]

defined by \(\psi : \sigma_1 \mapsto \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \psi : \sigma_2 \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \)

The kernel of \(\psi \) is the index 2 subgroup of the center of \(B_3 \).

The map \(\psi \) induces an action of \(B_3 \) on \((\mathbb{C}P^\infty)^2 \). Define the Borel constructions \(X := EB_3 \times_{B_3} (\mathbb{C}P^\infty)^2 \) that fits into the fibration

\[(\mathbb{C}P^\infty)^2 \hookrightarrow X \twoheadrightarrow BB_3. \]

The associated Serre spectral sequence is given by

\[E^{i,j}_2 = H^i(B_3; M^j) \Rightarrow H^{i+j}(X; \mathbb{Z}). \]
A central extension

There is an extension

\[1 \to \mathbb{Z} \to B_3 \overset{\psi}{\to} SL_2(\mathbb{Z}) \to 1. \]

defined by \(\psi : \sigma_1 \mapsto \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \psi : \sigma_2 \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \)

The kernel of \(\psi \) is the index 2 subgroup of the center of \(B_3 \).

The map \(\psi \) induces an action of \(B_3 \) on \((\mathbb{CP}^\infty)^2\). Define the Borel constructions \(X := EB_3 \times_{B_3} (\mathbb{CP}^\infty)^2 \) that fits into the fibration

\[(\mathbb{CP}^\infty)^2 \hookrightarrow X \twoheadrightarrow BB_3. \]

The associated Serre spectral sequence is give by

\[E_2^{i,j} = H^i(B_3; M^j) \Rightarrow H^{i+j}(X; \mathbb{Z}). \]
Results

In ’88 Furusawa, Tezuka, Yagita computed the cohomology of $SL_2(\mathbb{Z})$ with coefficients in the module $\mathbb{Q}[x, y]$ and $\mathbb{Z}_p[x, y]$ for any prime p.

We compute the cohomology of $SL_2(\mathbb{Z})$ and B_3 with coefficients in the module $M = \mathbb{Z}[x, y]$.
In ’88 Furusawa, Tezuka, Yagita computed the cohomology of $SL_2(\mathbb{Z})$ with coefficients in the module $\mathbb{Q}[x, y]$ and $\mathbb{Z}_p[x, y]$ for any prime p.

We compute the cohomology of $SL_2(\mathbb{Z})$ and B_3 with coefficients in the module $M = \mathbb{Z}[x, y]$.
Definition

The *principal congruence subgroup of level* n, $\Gamma(n) \subset SL_2(\mathbb{Z})$ is the kernel of the mod-n reduction map

$$SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}_n)$$

and the group $B_{\Gamma(n)}$ is the subgroup of B_3 that is the counter-image of $\Gamma(n)$ with respect to the projection

$$\psi : B_3 \to SL_2(\mathbb{Z}).$$
The principal congruence subgroup of level n, $\Gamma(n) \subset SL_2(\mathbb{Z})$ is the kernel of the mod-n reduction map

$$SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}_n)$$

and the group $B_{\Gamma(n)}$ is the subgroup of B_3 that is the counter-image of $\Gamma(n)$ with respect to the projection $\psi : B_3 \to SL_2(\mathbb{Z})$.
The group $SL_2(\mathbb{Z}_2)$ is the symmetric group Σ_3 on three elements. The group $B_{\Gamma(2)} \subset B_3$ is the kernel of the map $B_3 \to \Sigma_3$ and hence is the pure braid group P_3 on three strands.

By the Kurosh subgroup Theorem, $\Gamma(2) = F_2 \times \mathbb{Z}_2$.
For $n > 2$ the group $\Gamma(n)$ is a free, finitely generated.

We compute the cohomology with coefficients in the module $M = \mathbb{Z}[x, y]$ also for the subgroups $\Gamma(n)$ and $B_{\Gamma(n)}$.
The group $SL_2(\mathbb{Z}_2)$ is the symmetric group Σ_3 on three elements. The group $B_{\Gamma(2)} \subset B_3$ is the kernel of the map $B_3 \to \Sigma_3$ and hence is the pure braid group P_3 on three strands.

By the Kurosh subgroup Theorem, $\Gamma(2) = F_2 \times \mathbb{Z}_2$.
For $n > 2$ the group $\Gamma(n)$ is a free, finitely generated.

We compute the cohomology with coefficients in the module $M = \mathbb{Z}[x, y]$ also for the subgroups $\Gamma(n)$ and $B_{\Gamma(n)}$.
The group $SL_2(\mathbb{Z}_2)$ is the symmetric group Σ_3 on three elements. The group $B_{\Gamma(2)} \subset B_3$ is the kernel of the map $B_3 \to \Sigma_3$ and hence is the pure braid group P_3 on three strands.

By the Kurosh subgroup Theorem, $\Gamma(2) = F_2 \times \mathbb{Z}_2$.
For $n > 2$ the group $\Gamma(n)$ is a free, finitely generated.

We compute the cohomology with coefficients in the module $M = \mathbb{Z}[x, y]$ also for the subgroups $\Gamma(n)$ and $B_{\Gamma(n)}$.
Let k be a positive integer and f an holomorphic form on the upper half-plane $\mathbb{H} \cup \{\infty\}$.

Definition
The function f is an *cusp integral modular form of weight k (w.r. to $SL_2(\mathbb{Z})$)* if

$$f\left(\frac{az + b}{cz + d}\right) = (cz + d)^k f(z) \quad \forall k \left(\begin{array}{cc}a & b \\c & d\end{array}\right) \in SL_2(\mathbb{Z}).$$

and $f(\infty) = 0$.

Definition
We call \mathcal{M}_k^0 the space of cusp modular forms of weight k.
Let k be a positive integer and f an holomorphic form on the upper half-plane $\mathbb{H} \cup \{\infty\}$.

Definition

The function f is an *cusp integral modular form of weight k* (w.r. to $SL_2(\mathbb{Z})$) if

$$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^kf(z) \quad \forall k \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

and $f(\infty) = 0$.

Definition

We call \mathcal{M}_k^0 the space of cusp modular forms of weight k.
Let k be a positive integer and f an holomorphic form on the upper half-plane $\mathbb{H} \cup \{\infty\}$.

Definition

The function f is an *cusp integral modular form of weight k* (w.r. to $SL_2(\mathbb{Z})$) if

$$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z) \quad \forall k \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

and $f(\infty) = 0$.

Definition

We call \mathcal{M}_k^0 the space of cusp modular forms of weight k.

Filippo Callegaro (Univ. Pisa)
Eicher-Shimura isomorphism

Theorem

For k odd the group $H^i(SL_2(\mathbb{Z}); M^{2k} \otimes \mathbb{R})$ is always trivial. For k even we have:

$$H^i(SL_2(\mathbb{Z}); M^{2k} \otimes \mathbb{R}) = \begin{cases}
\mathcal{M}^0_{k+2} \oplus \mathbb{R} & \text{if } i = 1 \text{ and } k \geq 1 \\
0 & \text{if } i > 0 \text{ or } i = 0 \text{ and } k > 0 \\
\mathbb{R} & \text{if } i = k = 0.
\end{cases}$$
Theorem

For k odd the group $H^i(SL_2(\mathbb{Z}); M^{2k} \otimes \mathbb{R})$ is always trivial.

For k even we have:

$$H^i(SL_2(\mathbb{Z}); M^{2k} \otimes \mathbb{R}) = \begin{cases}
\mathcal{M}^0_{k+2} \oplus \mathbb{R} & \text{if } i = 1 \text{ and } k \geq 1 \\
0 & \text{if } i > 0 \text{ or } i = 0 \text{ and } k > 0 \\
\mathbb{R} & \text{if } i = k = 0.
\end{cases}$$

Recall that M is trivial in odd dimension.
Definition (Divided polynomial algebra)

Let $\Delta[x]$ be the sub-\mathbb{Z}-module of $\mathbb{Q}[x]$ generated by the elements $x_n := \frac{x^n}{n!}$, for $n \in \mathbb{N}$. For any ring R we define $\Delta_R[x] := \Delta[x] \otimes_{\mathbb{Z}} R$.

The module $\Delta[x]$ is closed by multiplication and the product satisfy the relation $x_i x_j = \left(\binom{i+j}{i} \right) x_{i+j}$. We define in $\Delta[x]$ the ideal $I_p := (p^{v_p(n)+1} x_n, \text{ for } n \in \mathbb{N})$ where v_p is the p-adic additive valuation.

Definition (p-local divided polynomial algebra)

$\Delta_p[x] := \Delta[x]/I_p$.
Definition (Divided polynomial algebra)

Let $\Delta[x]$ be the sub-\mathbb{Z}-module of $\mathbb{Q}[x]$ generated by the elements $x_n := \frac{x^n}{n!}$, for $n \in \mathbb{N}$. For any ring R we define $\Delta_R[x] := \Delta[x] \otimes_{\mathbb{Z}} R$.

The module $\Delta[x]$ is closed by multiplication and the product satisfies the relation $x_i x_j = \binom{i+j}{i} x_{i+j}$. We define in $\Delta[x]$ the ideal $I_p := (p^{v_p(n)+1} x_n, \text{ for } n \in \mathbb{N})$ where v_p is the p-adic additive valuation.

Definition (p-local divided polynomial algebra)

$\Delta_p[x] := \Delta[x]/I_p$.

Filippo Callegaro (Univ. Pisa)
Definition (Divided polynomial algebra)

Let $\Delta[x]$ be the sub-\mathbb{Z}-module of $\mathbb{Q}[x]$ generated by the elements $x_n := \frac{x^n}{n!}$, for $n \in \mathbb{N}$. For any ring R we define $\Delta_R[x] := \Delta[x] \otimes_{\mathbb{Z}} R$.

The module $\Delta[x]$ is closed by multiplication and the product satisfy the relation $x_i x_j = \binom{i+j}{i} x_{i+j}$. We define in $\Delta[x]$ the ideal $I_p := (p^{v_p(n)+1} x_n, \text{ for } n \in \mathbb{N})$ where v_p is the p-adic additive valuation.

Definition (p-local divided polynomial algebra)

$\Delta_p[x] := \Delta[x]/I_p$.
Definition (Divided polynomial algebra)

Let $\Delta[x]$ be the sub-\mathbb{Z}-module of $\mathbb{Q}[x]$ generated by the elements $x_n := \frac{x^n}{n!}$, for $n \in \mathbb{N}$. For any ring R we define $\Delta_R[x] := \Delta[x] \otimes_{\mathbb{Z}} R$.

The module $\Delta[x]$ is closed by multiplication and the product satisfy the relation $x_i x_j = \binom{i + j}{i} x_{i+j}$. We define in $\Delta[x]$ the ideal $I_p := (p^{v_p(n)+1} x_n, \text{ for } n \in \mathbb{N})$ where v_p is the p-adic additive valuation.

Definition (p-local divided polynomial algebra)

$\Delta_p[x] := \Delta[x]/I_p$.
The element x_{pn} generate in $\Delta_p[x]$ a submodule isomorphic to \mathbb{Z}_{pn+1}.

Definition

We define also $\Delta^+[x]$ as the submodule of elements with zero constant term.

In more variables we define $\Delta_p[x,y] := \Delta_p[x] \otimes \Delta_p[y]$.

Theorem

$$\Delta_p^+[x] = \Delta_{\mathbb{Z}(p)}^+[x]/(px).$$
The element x_p^n generate in $\Delta_p[x]$ a submodule isomorphic to $\mathbb{Z}_{p^{n+1}}$.

Definition

We define also $\Delta^+[x]$ as the submodule of elements with zero constant term.

In more variables we define $\Delta_p[x,y] := \Delta_p[x] \otimes \Delta_p[y]$.

Theorem

$$\Delta^+_p[x] = \Delta^+_{\mathbb{Z}(p)}[x]/(px).$$
Divided polynomials and torsion

The element x_p^n generate in $\Delta_p[x]$ a submodule isomorphic to $\mathbb{Z}_{p^{n+1}}$.

Definition

We define also $\Delta^+[x]$ as the submodule of elements with zero constant term.

In more variables we define $\Delta_p[x,y] := \Delta_p[x] \otimes \Delta_p[y]$.

Theorem

$$\Delta^+_p[x] = \Delta^+_{\mathbb{Z}_p}[x]/(px).$$
Divided polynomials and torsion

The element x_{p^n} generate in $\Delta_p[x]$ a submodule isomorphic to $\mathbb{Z}_{p^{n+1}}$.

Definition

We define also $\Delta^+[x]$ as the submodule of elements with zero constant term.

In more variables we define $\Delta_p[x,y] := \Delta_p[x] \otimes \Delta_p[y]$.

Theorem

$$\Delta_p^+[x] = \Delta_{\mathbb{Z}(p)}[x]/(px).$$
Cohomology of $SL_2(\mathbb{Z})$

Theorem (-, Cohen, Salvetti)

\[H^1(SL_2(\mathbb{Z}); M)(p) = \Delta_p^+ [P_p, Q_p] \]

where $\deg P_p = 2(p + 1)$ and $\deg Q_p = 2p(p - 1)$.

Theorem (-, C, S)

For $i > 1$ the cohomology $H^i(SL_2(\mathbb{Z}); M^q)$ is 2-periodic in i. The free part is trivial and only 2, 4 and 3 torsion appear. $H^{2i}(SL_2(\mathbb{Z}); M^{8q})$ contains one submodule isomorphic to \mathbb{Z}_4. All the others groups are direct sum of modules isomorphic to \mathbb{Z}_2 and \mathbb{Z}_3.

Poincaré series for 2 and 3 torsion are computed.
Cohomology of $SL_2(\mathbb{Z})$

Theorem (-, Cohen, Salvetti)

\[H^1(SL_2(\mathbb{Z}); M)_p = \Delta^+_p [P_p, Q_p] \]

where \(\deg P_p = 2(p + 1) \) and \(\deg Q_p = 2p(p - 1) \).

Theorem (-, C, S)

For \(i > 1 \) the cohomology \(H^i(SL_2(\mathbb{Z}); M^q) \) is 2-periodic in \(i \). The free part is trivial and only 2, 4 and 3 torsion appear.

\(H^{2i}(SL_2(\mathbb{Z}); M^{8q}) \) contains one submodule isomorphic to \(\mathbb{Z}_4 \). All the others groups are direct sum of modules isomorphic to \(\mathbb{Z}_2 \) and \(\mathbb{Z}_3 \).

Poincaré series for 2 and 3 torsion are computed.
Cohomology of $SL_2(\mathbb{Z})$

Theorem (-, Cohen, Salvetti)

\[
H^1(SL_2(\mathbb{Z}); M)_p) = \Delta^+_p [P_p, Q_p]
\]
where $\deg P_p = 2(p + 1)$ and $\deg Q_p = 2p(p - 1)$.

Theorem (-, C, S)

For $i > 1$ the cohomology $H^i(SL_2(\mathbb{Z}); M^q)$ is 2-periodic in i. The free part is trivial and only 2, 4 and 3 torsion appear. $H^{2i}(SL_2(\mathbb{Z}); M^{8q})$ contains one submodule isomorphic to \mathbb{Z}_4. All the others groups are direct sum of modules isomorphic to \mathbb{Z}_2 and \mathbb{Z}_3.

Poincaré series for 2 and 3 torsion are computed.
Cohomology of $SL_2(\mathbb{Z})$

Theorem (\(-,\) Cohen, Salvetti)

$$H^1(SL_2(\mathbb{Z}); M)_p = \Delta_p^+ [P_p, Q_p]$$
where $\deg P_p = 2(p + 1)$ and $\deg Q_p = 2p(p - 1)$.

Theorem (\(-,\) C, S)

For $i > 1$ the cohomology $H^i(SL_2(\mathbb{Z}); M^q)$ is 2-periodic in i. The free part is trivial and only 2, 4 and 3 torsion appear. $H^{2i}(SL_2(\mathbb{Z}); M^{8q})$ contains one submodule isomorphic to \mathbb{Z}_4. All the others groups are direct sum of modules isomorphic to \mathbb{Z}_2 and \mathbb{Z}_3.

Poincaré series for 2 and 3 torsion are computed.
Cohomology of B_3

Theorem (-, C, S)

\[
\begin{align*}
H^1(B_3; M)_p &= H^1(SL_2(\mathbb{Z}); M)_p; \\
H^1(B_3; M^q \otimes \mathbb{Q}) &= H^2(B_3; M^q \otimes \mathbb{Q}) = H^1(SL_2(\mathbb{Z}); M^q \otimes \mathbb{Q}) \text{ for } q > 0; \\
H^2(B_3; M)_p &= H^1(SL_2(\mathbb{Z}); M)_p \text{ for any prime } p \geq 5.
\end{align*}
\]

Theorem (-, C, S)

\[
\begin{align*}
H^2(B_3; M)_{(2)} &= \Delta_2^+ [P_2, Q_2] \oplus \mathbb{Z}_2[\overline{Q}_2]/ \sim \\
&\text{with } \frac{Q_2^n}{n!} \sim 2\overline{Q}_2; \\
H^2(B_3; M)_{(3)} &= \Delta_3^+ [P_3, Q_3] \oplus \mathbb{Z}_3[\overline{Q}_3]/ \sim \\
&\text{with } \frac{Q_3^n}{n!} \sim 3\overline{Q}_3 \text{ and } P_3 \frac{Q_3^n}{n!} \sim 0.
\end{align*}
\]
Cohomology of B_3

Theorem (-, C, S)

\[
H^1(B_3; M)_{(p)} = H^1(SL_2(\mathbb{Z}); M)_{(p)}; \\
H^1(B_3; M^q \otimes \mathbb{Q}) = H^2(B_3; M^q \otimes \mathbb{Q}) = H^1(SL_2(\mathbb{Z}); M^q \otimes \mathbb{Q}) \text{ for } q > 0; \\
H^2(B_3; M)_{(p)} = H^1(SL_2(\mathbb{Z}); M)_{(p)} \text{ for any prime } p \geq 5.
\]

Theorem (-, C, S)

\[
H^2(B_3; M)_{(2)} = \Delta_2^+ [P_2, Q_2] \oplus \mathbb{Z}_2[Q_2]/ \sim \\
\text{with } \frac{Q_2^n}{n!} \sim 2Q_2^n; \\
H^2(B_3; M)_{(3)} = \Delta_3^+ [P_3, Q_3] \oplus \mathbb{Z}_3[Q_3]/ \sim \\
\text{with } \frac{Q_3^n}{n!} \sim 3Q_3^n \text{ and } P_3 \frac{Q_3^n}{n!} \sim 0.
\]
Cohomology of B_3

Theorem (-, C, S)

\[H^1(B_3; M)_{(p)} = H^1(SL_2(\mathbb{Z}); M)_{(p)} ; \]
\[H^1(B_3; M^q \otimes \mathbb{Q}) = H^2(B_3; M^q \otimes \mathbb{Q}) = H^1(SL_2(\mathbb{Z}); M^q \otimes \mathbb{Q}) \text{ for } q > 0 ; \]
\[H^2(B_3; M)_{(p)} = H^1(SL_2(\mathbb{Z}); M)_{(p)} \text{ for any prime } p \geq 5 . \]

Theorem (-, C, S)

\[H^2(B_3; M)_{(2)} = \Delta_2^+ [P_2, Q_2] \oplus \mathbb{Z}_2[\overline{Q}_2] / \sim \]
with \(\frac{Q_n^2}{n!} \sim 2\overline{Q}_2^2 ; \)
\[H^2(B_3; M)_{(3)} = \Delta_3^+ [P_3, Q_3] \oplus \mathbb{Z}_3[\overline{Q}_3] / \sim \]
with \(\frac{Q_n^3}{n!} \sim 3\overline{Q}_3^n \text{ and } P_3 \frac{Q_n^3}{n!} \sim 0 . \)
Cohomology of $\Gamma(2)$

The $\Gamma(n)$-invariants in M can be easily computer with a generalization of Dickson invariant theory.

Theorem (-, C, S)

Let F_2 be the subgroup of $SL_2(\mathbb{Z})$ freely generated by s_1^2, s_2^2. The following isomorphisms hold.

For even n

\[H^1(\Gamma(2); M_n) = H^1(F_2; M_n), \]

and for $i > 0$

\[H^{2i}(\Gamma(2); M_n) = H^0(F_2; M_n \otimes \mathbb{Z}_2) = M_n \otimes \mathbb{Z}_2, \]

\[H^{2i+1}(\Gamma(2); M_n) = H^1(F_2; M_n) \otimes \mathbb{Z}_2. \]

For odd n and for $i > 0$

\[H^{2i-1}(\Gamma(2); M_n) = H^0(F_2; M_n \otimes \mathbb{Z}_2) = M_n \otimes \mathbb{Z}_2, \]

\[H^{2i}(\Gamma(2); M_n) = H^1(F_2; M_n) \otimes \mathbb{Z}_2 = H^1(F_2; M_n \otimes \mathbb{Z}_2). \]

Moreover for any n we have

\[H^1(F_2; M_n \otimes \mathbb{Z}_2) = (M_n \oplus M_n) \otimes \mathbb{Z}_2. \]
Cohomology of $\Gamma(2)$

The $\Gamma(n)$-invariants in M can be easily computed with a generalization of Dickson invariant theory.

Theorem (-, C, S)

Let F_2 be the subgroup of $SL_2(\mathbb{Z})$ freely generated by s_1^2, s_2^2. The following isomorphisms hold.

For even n \[H^1(\Gamma(2); M_n) = H^1(F_2; M_n), \]
and for $i > 0$ \[H^{2i}(\Gamma(2); M_n) = H^0(F_2; M_n \otimes \mathbb{Z}_2) = M_n \otimes \mathbb{Z}_2, \]
\[H^{2i+1}(\Gamma(2); M_n) = H^1(F_2; M_n) \otimes \mathbb{Z}_2. \]

For odd n and for $i > 0$ \[H^{2i-1}(\Gamma(2); M_n) = H^0(F_2; M_n \otimes \mathbb{Z}_2) = M_n \otimes \mathbb{Z}_2, \]
\[H^{2i}(\Gamma(2); M_n) = H^1(F_2; M_n) \otimes \mathbb{Z}_2 = H^1(F_2; M_n \otimes \mathbb{Z}_2). \]
Moreover for any n we have \[H^1(F_2; M_n \otimes \mathbb{Z}_2) = (M_n \oplus M_n) \otimes \mathbb{Z}_2. \]
The $\Gamma(n)$-invariants in M can be easily computed with a generalization of Dickson invariant theory.

Theorem (-, C, S)

Let F_2 be the subgroup of $SL_2(\mathbb{Z})$ freely generated by s_1^2, s_2^2. The following isomorphisms hold.

For even n $H^1(\Gamma(2); M_n) = H^1(F_2; M_n)$, and for $i > 0$ $H^{2i}(\Gamma(2); M_n) = H^0(F_2; M_n \otimes \mathbb{Z}_2) = M_n \otimes \mathbb{Z}_2$,

$H^{2i+1}(\Gamma(2); M_n) = H^1(F_2; M_n) \otimes \mathbb{Z}_2$.

For odd n and for $i > 0$

$H^{2i-1}(\Gamma(2); M_n) = H^0(F_2; M_n \otimes \mathbb{Z}_2) = M_n \otimes \mathbb{Z}_2$,

$H^{2i}(\Gamma(2); M_n) = H^1(F_2; M_n) \otimes \mathbb{Z}_2 = H^1(F_2; M_n \otimes \mathbb{Z}_2)$.

Moreover for any n we have

$H^1(F_2; M_n \otimes \mathbb{Z}_2) = (M_n \oplus M_n) \otimes \mathbb{Z}_2$.
The $\Gamma(n)$-invariants in M can be easily computed with a generalization of Dickson invariant theory.

Theorem (-, C, S)

Let F_2 be the subgroup of $SL_2(\mathbb{Z})$ freely generated by s_1^2, s_2^2. The following isomorphisms hold.

For even n $H^1(\Gamma(2); M_n) = H^1(F_2; M_n)$,
and for $i > 0$ $H^{2i}(\Gamma(2); M_n) = H^0(F_2; M_n \otimes \mathbb{Z}_2) = M_n \otimes \mathbb{Z}_2$,
$H^{2i+1}(\Gamma(2); M_n) = H^1(F_2; M_n) \otimes \mathbb{Z}_2$.

For odd n and for $i > 0$
$H^{2i-1}(\Gamma(2); M_n) = H^0(F_2; M_n \otimes \mathbb{Z}_2) = M_n \otimes \mathbb{Z}_2$,
$H^{2i}(\Gamma(2); M_n) = H^1(F_2; M_n) \otimes \mathbb{Z}_2 = H^1(F_2; M_n \otimes \mathbb{Z}_2)$.

Moreover for any n we have
$H^1(F_2; M_n \otimes \mathbb{Z}_2) = (M_n \oplus M_n) \otimes \mathbb{Z}_2$.
Cohomology of $\Gamma(n)$

Schreier index formula allows to compute the rank of $H^*(\Gamma(m); M_n \otimes \mathbb{Q})$. [Details]

Theorem (-, C, S)

Let p be a prime number and $m > 1$ an integer.

If $p \nmid m$

the p-torsion component of $H^1(\Gamma(m); M_n)$ is given by: $H^1(\Gamma(m); M_n)(p) = H^1(SL_2(\mathbb{Z}); M_n)(p) = \Delta^+_p [P_p, Q_p]_{\text{deg}=n}$.

If $p \mid m$, suppose $p^a \mid m$, $p^{a+1} \nmid m$. Then we have

$H^1(\Gamma(m); M_{>0})(p) \simeq \Delta^+_p [x, y]$, where x, y have degree 1.
Schreier index formula allows to compute the rank of $H^*(\Gamma(m); M_n \otimes \mathbb{Q})$.

Theorem (-, C, S)

Let p be a prime number and $m > 1$ an integer.

If $p \nmid m$

the p-torsion component of $H^1(\Gamma(m); M_n)$ is given by:

$H^1(\Gamma(m); M_n)(p) = H^1(\text{SL}_2(\mathbb{Z}); M_n)(p) = \Delta_p^+ [\mathcal{P}_p, \mathcal{Q}_p]_{\text{deg}=n}$.

If $p \mid m$, suppose $p^a \mid m, p^{a+1} \nmid m$. Then we have

$H^1(\Gamma(m); M_{>0})(p) \simeq \Delta_p^{+a}[x, y]$ where x, y have degree 1.
Schreier index formula allows to compute the rank of \(H^*(\Gamma(m); M_n \otimes \mathbb{Q}) \).

Theorem (-, C, S)

Let \(p \) be a prime number and \(m > 1 \) an integer.

If \(p \nmid m \)

the \(p \)-torsion component of \(H^1(\Gamma(m); M_n) \) is given by:

\[
H^1(\Gamma(m); M_n)(p) = H^1(SL_2(\mathbb{Z}); M_n)(p) = \Delta_p^+ [P_p, Q_p]_{\deg=n}.
\]

If \(p \mid m \), suppose \(p^a \mid m, p^{a+1} \nmid m \). Then we have

\[
H^1(\Gamma(m); M_{>0})(p) \simeq \Delta_p^{+a}[x, y] \text{ where } x, y \text{ have degree 1}.
\]
Theorem (-, C, S)

\[H^0(B_{\Gamma(2)}; M_0) = \mathbb{Z}, \ H^1(B_{\Gamma(2)}; M_0) = \mathbb{Z}^3, \ H^2(B_{\Gamma(2)}; M_0) = \mathbb{Z}^2 \]

Let \(n > 0 \); for even \(n \);
\[H^0(B_{\Gamma(2)}; M_n) = H^0(\Gamma(2); M_n), \]
\[H^1(B_{\Gamma(2)}; M_n) = H^2(B_{\Gamma(2)}; M_n) = H^1(\Gamma(2); M_n) \]
for odd \(n \);
\[H^0(B_{\Gamma(2)}; M_n) = 0, \]
\[H^1(B_{\Gamma(2)}; M_n) = H^1(\Gamma(2); M_n) = M_n \otimes \mathbb{Z}_2, \]
\[H^2(B_{\Gamma(2)}; M_n) = H^2(\Gamma(2); M_n) = (M_n \oplus M_n) \otimes \mathbb{Z}_2 \]

for any \(m > 2 \), for any \(n \):
\[H^*(B_{\Gamma(m)}; M_n) = H^*(\Gamma(m); M_n) \otimes H^*(\mathbb{Z}; \mathbb{Z}). \]
Cohomology of $B_{\Gamma(n)}$

Theorem (-, C, S)

\[
H^0(B_{\Gamma(2)}; M_0) = \mathbb{Z}, \quad H^1(B_{\Gamma(2)}; M_0) = \mathbb{Z}^3, \quad H^2(B_{\Gamma(2)}; M_0) = \mathbb{Z}^2
\]

Let $n > 0$; for even n:

\[
H^0(B_{\Gamma(2)}; M_n) = H^0(\Gamma(2); M_n), \\
H^1(B_{\Gamma(2)}; M_n) = H^2(B_{\Gamma(2)}; M_n) = H^1(\Gamma(2); M_n)
\]

for odd n:

\[
H^0(B_{\Gamma(2)}; M_n) = 0, \\
H^1(B_{\Gamma(2)}; M_n) = H^1(\Gamma(2); M_n) = M_n \otimes \mathbb{Z}_2, \\
H^2(B_{\Gamma(2)}; M_n) = H^2(\Gamma(2); M_n) = (M_n \oplus M_n) \otimes \mathbb{Z}_2
\]

for any $m > 2$, for any n:

\[
H^*(B_{\Gamma(m)}; M_n) = H^*(\Gamma(m); M_n) \otimes H^*(\mathbb{Z}; \mathbb{Z}).
\]
Theorem (\(-, C, S\))

\[
\begin{align*}
H^0(B_{\Gamma(2)}; M_0) &= \mathbb{Z}, \quad H^1(B_{\Gamma(2)}; M_0) = \mathbb{Z}^3, \quad H^2(B_{\Gamma(2)}; M_0) = \mathbb{Z}^2 \\
\text{Let } n &> 0; \text{ for even } n; \quad H^0(B_{\Gamma(2)}; M_n) = H^0(\Gamma(2); M_n), \\
H^1(B_{\Gamma(2)}; M_n) &= H^2(B_{\Gamma(2)}; M_n) = H^1(\Gamma(2); M_n) \\
\text{for odd } n; \quad H^0(B_{\Gamma(2)}; M_n) = 0, \\
H^1(B_{\Gamma(2)}; M_n) &= H^1(\Gamma(2); M_n) = M_n \otimes \mathbb{Z}_2, \\
H^2(B_{\Gamma(2)}; M_n) &= H^2(\Gamma(2); M_n) = (M_n \oplus M_n) \otimes \mathbb{Z}_2 \\
\text{for any } m > 2, \text{ for any } n: \\
H^*(B_{\Gamma(m)}; M_n) &= H^*(\Gamma(m); M_n) \otimes H^*(\mathbb{Z}; \mathbb{Z}).
\end{align*}
\]
Cohomology of $B_{\Gamma(n)}$

Theorem $(-, C, S)$

$$H^0(B_{\Gamma(2)}; M_0) = \mathbb{Z}, \ H^1(B_{\Gamma(2)}; M_0) = \mathbb{Z}^3, \ H^2(B_{\Gamma(2)}; M_0) = \mathbb{Z}^2$$

Let $n > 0$; for even n: $H^0(B_{\Gamma(2)}; M_n) = H^0(\Gamma(2); M_n)$,

$H^1(B_{\Gamma(2)}; M_n) = H^2(B_{\Gamma(2)}; M_n) = H^1(\Gamma(2); M_n)$

for odd n: $H^0(B_{\Gamma(2)}; M_n) = 0$,

$H^1(B_{\Gamma(2)}; M_n) = H^1(\Gamma(2); M_n) = M_n \otimes \mathbb{Z}_2$,

$H^2(B_{\Gamma(2)}; M_n) = H^2(\Gamma(2); M_n) = (M_n \oplus M_n) \otimes \mathbb{Z}_2$

for any $m > 2$, for any n:

$H^*(B_{\Gamma(m)}; M_n) = H^*(\Gamma(m); M_n) \otimes H^*(\mathbb{Z}; \mathbb{Z})$.

Filippo Callegaro (Univ. Pisa)
Methods

- $SL_2(\mathbb{Z}) = \mathbb{Z}_4 \ast_{\mathbb{Z}_2} \mathbb{Z}_6$;
- Dickson’s invariant theory for $SL_2(\mathbb{Z})$;
- explicit computations for $H^*(G; M)$, $G = \mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_6$;
- study of the spectral sequence for $\mathbb{Z} \to B_3 \to SL_2(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_4 \to SL_2(\mathbb{Z})$ and $\mathbb{Z}_6 \to SL_2(\mathbb{Z})$;
- Bockstein homomorphisms.
Methods

- $SL_2(\mathbb{Z}) = \mathbb{Z}_4 \ast_{\mathbb{Z}_2} \mathbb{Z}_6$;
- Dickson’s invariant theory for $SL_2(\mathbb{Z})$;
- explicit computations for $H^*(G; M)$, $G = \mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_6$;
- study of the spectral sequence for $\mathbb{Z} \to B_3 \to SL_2(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_4 \hookrightarrow SL_2(\mathbb{Z})$ and $\mathbb{Z}_6 \hookrightarrow SL_2(\mathbb{Z})$;
- Bockstein homomorphisms.
Methods

- $SL_2(\mathbb{Z}) = \mathbb{Z}_4 \ast \mathbb{Z}_2 \mathbb{Z}_6$;
- Dickson’s invariant theory for $SL_2(\mathbb{Z})$;
- explicit computations for $H^*(G; M)$, $G = \mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_6$;
- study of the spectral sequence for $\mathbb{Z} \rightarrow B_3 \rightarrow SL_2(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_4 \hookrightarrow SL_2(\mathbb{Z})$ and $\mathbb{Z}_6 \hookrightarrow SL_2(\mathbb{Z})$;
- Bockstein homomorphisms.
Methods

- $SL_2(\mathbb{Z}) = \mathbb{Z}_4 \ast_{\mathbb{Z}_2} \mathbb{Z}_6$;
- Dickson’s invariant theory for $SL_2(\mathbb{Z})$;
- explicit computations for $H^*(G; M)$, $G = \mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_6$;
- study of the spectral sequence for $\mathbb{Z} \to B_3 \to SL_2(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_4 \hookrightarrow SL_2(\mathbb{Z})$ and $\mathbb{Z}_6 \hookrightarrow SL_2(\mathbb{Z})$;
- Bockstein homomorphisms.
Methods

- $SL_2(\mathbb{Z}) = \mathbb{Z}_4 \ast_{\mathbb{Z}_2} \mathbb{Z}_6$;
- Dickson’s invariant theory for $SL_2(\mathbb{Z})$;
- explicit computations for $H^*(G; M)$, $G = \mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_6$;
- study of the spectral sequence for $\mathbb{Z} \to B_3 \to SL_2(\mathbb{Z})$;
- study of the maps of spectral sequences induced by $\mathbb{Z}_4 \hookrightarrow SL_2(\mathbb{Z})$ and $\mathbb{Z}_6 \hookrightarrow SL_2(\mathbb{Z})$;
- Bockstein homomorphisms.
Methods

- \(SL_2(\mathbb{Z}) = \mathbb{Z}_4 \rtimes \mathbb{Z}_2 \rtimes \mathbb{Z}_6 \);
- Dickson’s invariant theory for \(SL_2(\mathbb{Z}) \);
- explicit computations for \(H^*(G; M) \), \(G = \mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_6 \);
- study of the spectral sequence for \(\mathbb{Z} \to B_3 \to SL_2(\mathbb{Z}) \);
- study of the maps of spectral sequences induced by \(\mathbb{Z}_4 \hookrightarrow SL_2(\mathbb{Z}) \) and \(\mathbb{Z}_6 \hookrightarrow SL_2(\mathbb{Z}) \);
- Bockstein homomorphisms.
In ’79 Cohen, Moore and Neisendorfer constructed a family of maps

$$\Omega^2 S^{2n+1} \xrightarrow{\alpha_n} S^{2n-1}$$

such that the composition $\Omega^2 S^{2n+1} \xrightarrow{\alpha_n} S^{2n-1} \xrightarrow{E} \Omega^2 S^{2n+1}$ with the double suspension gives, up to homotopy, the p^r power map, for any prime $p \geq 3$, and $r \geq 1$.

The existence of the map α_n, for $r = 1$, was used to show that p^{2n} annihilates the p-torsion in $\pi_*(S^{2n+1})$.
In ’79 Cohen, Moore and Neisendorfer constructed a family of maps

\[\Omega^2 S^{2n+1} \xrightarrow{\alpha_n} S^{2n-1} \]

such that the composition \(\Omega^2 S^{2n+1} \xrightarrow{\alpha_n} S^{2n-1} \xrightarrow{E} \Omega^2 S^{2n+1} \) with the double suspension gives, up to homotopy, the \(p^r \) power map, for any prime \(p \geq 3 \), and \(r \geq 1 \).

The existence of the map \(\alpha_n \), for \(r = 1 \), was used to show that \(p^{2n} \) annihilates the \(p \)-torsion in \(\pi_*(S^{2n+1}) \).
Anick fibration

Cohen, Moore and Neisendorfer conjectured the existence of a p-local fibration

$$S^{2n-1} \to T_{p^r}(2n + 1) \to \Omega S^{2n+1}.$$

with connecting map $\Omega^2 S^{2n+1} \xrightarrow{\alpha_n} S^{2n-1}$.

In '93 Anick constructed such a fibration sequence for $p > 3$. In 2007 Gary and Theriault gave a construction that is valid also for $p = 3$.

Theorem

The reduced cohomology of the space $T_p(2n + 1)$ is given by:

$$\overline{H}^i(T_p(2n + 1); \mathbb{Z}_p) = \begin{cases} \mathbb{Z}/p^r & \text{if } i = 2np^{r-1}k, p \nmid k; \\ 0 & \text{otherwise.} \end{cases}$$
Cohen, Moore and Neisendorfer conjectured the existence of a p-local fibration

$$S^{2n-1} \to T_{p^r}(2n+1) \to \Omega S^{2n+1}.\$$

with connecting map $\Omega^2 S^{2n+1} \xrightarrow{\alpha_n} S^{2n-1}$.

In ’93 Anick constructed such a fibration sequence for $p > 3$. In 2007 Gary and Theriault gave a construction that is valid also for $p = 3$.

Theorem

The reduced cohomology of the space $T_p(2n+1)$ is given by:

$$\overline{H}^i(T_p(2n+1); \mathbb{Z}(p)) = \begin{cases} \mathbb{Z}/p^r & \text{if } i = 2np^{r-1}k, p \nmid k; \\ 0 & \text{otherwise.} \end{cases}$$
Anick fibration

Cohen, Moore and Neisendorfer conjectured the existence of a p-local fibration

$$S^{2n-1} \to T_{p^r}(2n + 1) \to \Omega S^{2n+1}.$$

with connecting map $\Omega^2 S^{2n+1} \xrightarrow{\alpha_n} S^{2n-1}$.

In '93 Anick constructed such a fibration sequence for $p > 3$. In 2007 Gary and Theriault gave a construction that is valid also for $p = 3$.

Theorem

The reduced cohomology of the space $T_p(2n + 1)$ is given by:

$$\overline{H}^i(T_p(2n + 1); \mathbb{Z}(p)) = \begin{cases} \mathbb{Z}/p^r & \text{if } i = 2np^{r-1}k, p \nmid k; \\ 0 & \text{otherwise}. \end{cases}$$
Let $p \geq 5$ be a prime.

a) $H^\ast(EB_3 \times B_3 (\mathbb{C}P^\infty)^2; \mathbb{Z})_{(p)} = H^\ast(S^1 \times BDiff_+ (T^2); \mathbb{Z})_{(p)}$

b) The p-torsion component in the cohomology group $H^\ast(EB_3 \times B_3 (\mathbb{C}P^\infty)^2; \mathbb{Z})$ is isomorphic to the reduced cohomology of the space.
Theorem (\(-,C, S\))

Let \(p \geq 5 \) *be a prime.*

a) \(H^*\left(EB_3 \times B_3 \left(\mathbb{C}P^\infty\right)^2; \mathbb{Z}\right)_{(p)} = H^*\left(S^1 \times BDiff_+(T^2); \mathbb{Z}\right)_{(p)} \)

b) *The* \(p \)-torsion component in the cohomology group \(H^*\left(EB_3 \times B_3 \left(\mathbb{C}P^\infty\right)^2; \mathbb{Z}\right) \) *is isomorphic to the reduced cohomology of the space*

\[\Sigma^2 \left(T_p(2p + 3) \times T_p(2p^2 - 2p + 1)\right) \]
A surprising relation

Theorem $(-, C, S)$

Let $p \geq 5$ be a prime.

a) $H^*(EB_3 \times B_3 (\mathbb{C}P^\infty)^2; \mathbb{Z})_p = H^*(S^1 \times BDiff^+(T^2); \mathbb{Z})_p$

b) The p-torsion component in the cohomology group $H^*(EB_3 \times B_3 (\mathbb{C}P^\infty)^2; \mathbb{Z})$ is isomorphic to the reduced cohomology of the space $\Sigma^2(T_p(2p + 3) \times T_p(2p^2 - 2p + 1)) \vee \Sigma(T_p(2p + 3) \vee T_p(2p^2 - 2p + 1))$.

Question

Is there any topological explanation for the isomorphism above?
A surprising relation

Theorem (-, C, S)

Let \(p \geq 5 \) be a prime.

a) \(H^*(EB_3 \times B_3 (\mathbb{C}P^\infty)^2; \mathbb{Z}) (p) = H^*(S^1 \times BDiff_+ (T^2); \mathbb{Z}) (p) \)

b) The \(p \)-torsion component in the cohomology group \(H^*(EB_3 \times B_3 (\mathbb{C}P^\infty)^2; \mathbb{Z}) \) is isomorphic to the reduced cohomology of the space

\[
\Sigma^2 (T_p(2p+3) \times T_p(2p^2 - 2p + 1)) \vee \Sigma (T_p(2p+3) \vee T_p(2p^2 - 2p + 1)).
\]

Question

Is there any topological explanation for the isomorphism above?
Thank you for your attention!
Theorem

The group $H^0(\Gamma(m); M_n)$ is isomorphic to M_0 for $n = 0$ and is trivial for $n > 0$.

Theorem

Let $m > 2$ be an integer that factors as $m = p_1^{a_1} \cdots p_k^{a_k}$. The cardinality of $SL_2(\mathbb{Z}_m)$ is given by $d = \prod_i p_i^{(a_i-1)3} p_i(p_i^2 - 1)$ and if we define $i = \frac{d}{p_1(p_1^2 - 1)}$ then $\Gamma(m)$ is a free group of rank

$$r = \begin{cases}
\frac{i}{2} + 1 & \text{if } p_1 = 2 \\
i(p_1(p_1^2 - 1) - 1) + 1 & \text{if } p_1 > 2
\end{cases}$$

The rank of the group $H^1(\Gamma(m); M_n \otimes \mathbb{Q})$ is r, for $n = 0$ and $(r - 1)(n + 1)$ for $n > 0$.

[Back]