This project develops novel anti-jamming techniques for Global Navigation Satellite Systems (GNSS) that are effective, yet computationally affordable. GNSS is ubiquitous in civilian, security and defense applications, causing a growing dependence on such technology for position and timing purposes, particularly in critical infrastructures. The threat of a potential disruption of GNSS is real and can lead to catastrophic consequences. This project studies methods to secure GNSS receivers from jamming interference, and doing so within size, weight, and power (SWAP) requirements. Existing solutions are either bulky and not cost-effective, such as those based on antenna array technology, or specifically adapted to an interference type. In addition, most of these solutions require the detection and classification of the interference before mitigating its effects, which constitutes a single point of error in the process. This project will investigate GNSS receivers that are resilient to interference without requiring detection and classification, by leveraging robust statistics to design methods that require few modifications with respect to state-of-the-art receiver architectures, keeping SWAP requirements comparable to those from standard GNSS receivers. The findings will be implemented and validated on an end-to-end GNSS software-defined radio receiver, successfully transitioning research into practice. Educational activities are closely integrated with this research agenda, including a course developed by the principal investigator and outreach activities.

This research advances knowledge of how robust statistics can be leveraged to design cost-effective and efficient mitigation techniques for anti-jamming GNSS. The main premise of the project is that most interference sources have a sparse representation, on which they can be seen as outliers to the nominal signal model. Tools from robust statistics are then used to discard those outliers in a sound manner, identifying and substituting specific critical operations in GNSS processing. This approach avoids the need for detecting and estimating interference, processes which can cause errors. The project envisions a lightweight, yet robust, GNSS receiver that can be easily adopted in substitution of current GNSS receivers that are supporting operation of critical infrastructures. It will enable reliable and precise anti-jamming technology with drastic SWAP and cost improvements. Particularly, the project will provide a GNSS receiver solution that can cope with common jamming interference. The development of such receiver enhancements, along with their validation in a software receiver, will allow for large-scale deployments of GNSS receivers that are more resilient and reliable.

Principal Investigator: Pau Closas (Northeastern University)

Research Group: Information Processing Lab

Funding: National Science Foundation (CNS-1815349)

Abstract Source: NSF