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Learning to avoid aposematic prey
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The evolution of prey warning coloration is, literally, a textbook example of Darwinian adaptive evolution
by natural selection. The cornerstone of this evolutionary process is a predation event, the dynamics of
which are poorly understood. Aposematic (warningly coloured) prey are relatively unpalatable and their
conspicuous appearance should enable predators to avoid them, but such is not always the case. Based
on models of conditioned learning, it has been assumed that the number of aposematic prey that a pred-
ator will attack as it learns to avoid such prey should be constant or declining as the prey’s abundance in-
creases. However, empirical studies have shown that predators make more attacks on aposematic prey
when those prey are more common. I suggest that this failure of theory to predict behaviour probably
arises from limitations of the learning models in question. Rather than using mechanistic models of con-
ditioned learning, I used signal detection theory to provide a functional characterization of the uncertainty
that inexperienced predators encounter when learning to distinguish prey types. This characterization ex-
plains otherwise puzzling data on predation on aposematic prey and can offer insight on the selective pres-
sures driving the evolution of aposematism and mimicry.

� 2005 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
The combination of conspicuous appearance and unpal-
atability is an antipredator defence known as aposema-
tism. Their unpalatability makes aposematic prey
(aposemes) costly to attack and predators should avoid
them. However, predators often fail to discriminate apo-
sematic prey from more cryptic and palatable prey, and
discrimination varies with aposeme abundance, gregari-
ousness, palatability and conspicuousness (reviews in
Joron & Mallet 1998; Speed 1999).
This interplay of morphological, physiological and

ecological factors with predation has made the evolu-
tion of aposematism important in our understanding of
the behavioural mechanisms of natural selection in
general (Turner 1987; Joron & Mallet 1998; Speed
2001). As a case study of Darwinian adaptation, topics
in aposematism are under active investigation at many
levels of biological organization, including ecology, popu-
lation genetics, genetic control of morphology, toxin me-
tabolism and behaviour. Aposematism also provides an
experimentally useful system for the relatively new
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perspective in evolutionary biology that examines the ef-
fects of cognition as both a selective agent and a character
under selection.
The event at the centre of all the excitement is the

predatory act. Expectations of the patterns of predation on
aposematic prey have assumed either tacitly (Müller 1879;
Endler 1988; Lindström et al. 2001) or explicitly (Speed
1993; Speed & Turner 1999; Servedio 2000) that a form
of conditioned learning underlies predator behaviour.
Predators, it is assumed, learn an association between an
aposeme’s conspicuous appearance and the relative cost
accrued upon attacking the unpalatable prey item. The
learning theory commonly used is associative learning
theory (Bush & Mosteller 1955; Rescorla & Wagner 1972;
see also Domjan 1998). The Rescorla–Wagner model of as-
sociative learning (Rescorla & Wagner 1972) is the most
widely known implementation of associative learning the-
ory. However, much has changed since the formulation of
the early models. Limitations of the models have been dis-
covered and addressed (e.g. Miller & Matzel 1988; Van
Hamme&Wasserman 1994; Dickenson 2001), and entirely
nonassociative learning mechanisms have been put for-
ward (e.g. Gallistel & Gibbon 2000). For an introduction
to the current debate over learning mechanisms, see Leslie
(2001) and accompanying articles.
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Within behavioural ecology, learning-oriented research
is concerned largely with the effects of learning on
ecology and evolution and does not produce studies
adequate to differentiate between learning mechanisms.
Commitment to a hypothesized mechanism ill suited to
the type of learning under study could therefore lead to
unwarranted conclusions. A failure to take advantage of
modern developments in learning theory may hold back
our understanding of how learned behaviours, such as
discrimination and choice, affect ecological and evolu-
tionary processes. In the present study, rather than
commit to a specific hypothesis of learning mechanism,
I used signal detection theory (Green & Swets 1966) as
a functional characterization of the uncertainty experi-
enced by predators as they learn to distinguish prey types.
By allowing that predators may experience uncertainty
about how to respond to prey (i.e. whether a given prey
item should be attacked or avoided), signal detection the-
ory offers an alternative account of these predation events
and may enhance current theories to produce a more com-
plete understanding of predator response to aposematic or
other prey.
Signal detection theory provides a model of how

animals choose between stimuli under conditions of
uncertainty. Typically, that uncertainty is considered to
arise from perceived similarity in the appearance of
stimuli (e.g. Straddon & Gendron 1983; Getty 1985,
1987, 1996; Greenwood 1986; Sherratt 2001). In cases of
mimicry, for example, any given prey item has some prob-
ability of being either a model or a mimic (e.g. Getty &
Krebs 1985; Davies et al. 1996; Rodrı́guez-Gironés & Lo-
tem 1999). Perceived variability in prey appearance might
mirror phenotypic variability in the prey or arise from sen-
sory noise (Boneau & Cole 1967). Signal detection theory
might seem to be a poor candidate for describing predator
response to aposematism, then, because aposemes are by
definition conspicuous and should be distinguishable
from cryptic prey without perceptual uncertainty. More
generally, however, the uncertainty modelled by signal de-
tection theory arises from stimulus generalization (Blough
1967, 1969), a process dependent on reinforcement history
in addition to perception. I suggest that inexperienced ani-
mals may be able to perceptually distinguish stimuli very
well, yet be uncertain as to the appropriate response to
give to aparticular stimulus. The applicationof signal detec-
tion theory that I have developed differs from applications
withinbehavioural ecology, in that theuncertaintyof inter-
est arises from inexperience rather than from perceptual
confusion.
Under signal detection theory, the likelihood of appro-

priate response (attacking SC, the prey type to which
response is relatively beneficial, or ignoring S�, the prey
type to which response is relatively costly) is a function of
variation in prey appearance (Fig. 1). Predators place a re-
sponse threshold on a continuum of prey appearance. At-
tacks on SC are considered ‘correct detections’, whereas
S� prey suffer ‘false alarm’ attacks. Placement of the
threshold is guided by a utility function (equation 1),
the maximum of which is sensitive to three signal param-
eters: abundance of the two prey types relative to each
other, the distributions of appropriate response to each
prey type over the perceptual domain, and costs and ben-
efits accrued for responding to or ignoring the prey types.
Following Sperling (1984), utility is estimated as:

UðxÞZahPðCDÞCamPðMDÞCð1� aÞaPðFAÞ
Cð1� aÞjPðCRÞ ð1Þ

where P(CD) is the probability of correct detection (mea-
sured as the integral of the SC distribution from threshold
to �N), P(MD) is the probability of missed detection
(Z1 � P(CD)), P(FA) is the probability of false alarm (inte-
gral of the S� distribution from threshold to �N), P(CR) is
the probability of correct rejection (Z1 � P(FA)), a is the
relative probability of encountering an SC prey item
(1 � a Z the relative probability of encountering an S�
prey item), h is the benefit of correct detection, m is the
cost of missed detection, a is the cost of false alarm and
j is the benefit of correct rejection (hO m, jO a).

In this paper, I contrast associative learning theory
approaches to aposeme predation with this ‘signals’
approach. I describe how the perspectives make different
predictions about the number of prey that a predator will
attack but make similar predictions about frequency-
dependent selection, although for different reasons.
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Figure 1. Avoidance learning as a signal detection task involves dis-

crimination of two prey types: SC, the prey type to which response

is relatively beneficial (e.g. cryptic palatable prey or moderately de-

fended aposemes), and S�, the type to which response is relatively
costly (e.g. strongly defended aposemes). The likelihood of appropri-

ate response to the two types (i.e. bell-shaped signal distributions)

varies over a continuum of prey perceptual similarity. Signal distribu-
tions correspond to stimulus generalization gradients, not to per-

ceived visual similarity. That gradients tend to be bell-shaped and

decrease in variance with training is well established (e.g. Rilling

1977). Overlapping distributions represent uncertainty about which
response is appropriate to give to any given prey item. Overlap does

not necessarily indicate that the predator perceives SC to look sim-

ilar to S�. Such uncertainty exists, for example, when predators are

inexperienced or when aposematic and cryptic palatable prey types
may be confused for one another because of similar morphology

(e.g. both are crickets; Sword 1999). The predator behaves as

though it places a threshold on the appearance continuum, attack-
ing all prey with an appearance left of threshold, incurring both cor-

rect detections of SC prey and false alarm attacks on S� prey. Prey

abundance affects false alarm probabilities via its influence on utility

(equation 1): Tc, the conservative ‘S� common’ threshold, denotes
the optimal decision criterion (utility maximum) for a relative abun-

dance of S� prey Z 0.75. Tr, the more permissive ‘S� rare’ thresh-

old, denotes the optimal decision criterion for a relative abundance

of S� prey Z 0.25. Other utility function parameter values produc-
ing Tc and Tr in this example: difference between distribution

means Z 2.0; variance of both prey distributions Z 1; benefit of cor-

rect detection, h Z 1.0; cost of false alarm aZ �1.0; cost of missed
detection, m, and benefit of correct rejection, jZ 0.0.
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ABSOLUTE NUMBER OF PREY ATTACKED

The two common approaches to aposeme predation have
assumed that the total number of aposemes attacked, n,
during the period in which a predator learns to avoid apo-
semes should be constant at any level of aposeme abun-
dance. Müller’s influential ‘number-dependent’ theory
specifies this constant directly (Müller 1879; Joron & Mal-
let 1998; Mallet & Joron 1999; Speed 1999). Models based
more formally on associative learning theory (Speed 1993;
Turner & Speed 1996; MacDougall & Dawkins 1998; Serve-
dio 2000) do not specify n explicitly, but use a combina-
tion of associative learning parameters that are constant
over all prey abundance. In situations where predators
have any ability to distinguish prey, the effect is constant
n. Theories based on conditioning posit that a predator
will require some fixed amount of experience to show
a particular level of avoidance of an aposematic prey
type relative to alternative prey. That amount of condi-
tioning may be produced by, for example, nZ 10 encoun-
ters with aposematic prey of a given appearance and
unpalatability. Some accounts posit that conditioning de-
cays (i.e. animals forget; Speed 1993; Turner & Speed
1996; Servedio 2000). When aposematic prey are at low
abundance, predators that forget may need a greater abso-
lute number of encounters to learn to avoid those rare, in-
frequently encountered prey. Models with forgetting thus
predict a declining n as aposeme abundance increases. At
moderate to high aposeme abundance, both Müller’s
and the associative models predict that predators should
require a fixed (i.e. at 10) number of encounters to learn
to avoid aposemes (Joron & Mallet 1998). Attacks on apo-
sematic prey are thus attributed to poor learning and/or
forgetting.
Three experiments have reported the number of apose-

matic prey attacked at different levels of aposeme abun-
dance. Each used avian predators with artificial prey.
Greenwood et al. (1989) used a polymorphic aposematic
system. Two prey types were each conspicuous against
the background, easy to discriminate from one another
and equally unpalatable. Speed et al. (2000; see also Speed
1999, page 761) used five prey types, including a quasi-
Batesian mimic. All prey were conspicuous against the
background. Prey types included a palatable type, and
strongly defended model and distinct types, and moder-
ately defended mimic and distinct types. Lindström
et al. (2001) used a classically aposematic system. Apo-
semes were easily distinguished from background and pal-
atable prey. Palatable prey were cryptic.
In none of these experiments did predators support

either the declining or constant n predictions. Rather,
predators made higher absolute numbers of attacks on
aposematic prey during treatments in which aposemes
were at high abundance levels than in those in which apo-
semes were in low abundance levels relative to alternative
prey types. In low abundance conditions, predators
showed that they were capable of making relatively few
mistakes. According to the conventional models, that
minimum number of mistakes is all that should be re-
quired by predators to show a given level of avoidance,
no matter what the abundance. In high abundance
conditions, however, predators made more mistakes under
otherwise identical conditions. Such results remain unex-
plained (Speed 1999; Lindström et al. 2001). Paradoxically,
the conclusion drawn has been that, to learn to avoid apo-
semes, predators must eat more of these conspicuous, un-
palatable prey when such prey are common than when
they are rare (Mallet 2001).
Signal detection theory suggests a different perspective.

If predators are uncertain about whether to attack or avoid
a particular prey item, then the absolute number of S�
(e.g. aposematic) prey attacked, n, will vary as a function
of the probability of false alarm (Fig. 2). When S� prey
are rare, the predator’s permissive threshold (Fig. 1) will
lead that prey type to suffer a high probability of false
alarm attacks (Fig. 2a). At low abundance, false alarm at-
tacks will be small in absolute number (Fig. 2b) because
there are few S� prey to attack (although these attacks
may encompass a large fraction of the S� population).
As S� prey become more common, the utility function
(equation 1) dictates that the threshold will become
more restrictive, lowering the probability of false alarm
(Fig. 1). During this process, the number of attacks on
S� prey will initially increase, then decrease (Fig. 2b).
Predators are predicted to make the most false alarm
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Figure 2. Under signal detection theory, an S� prey type will suffer

a similar pattern of false alarm attacks whether generalization
gradients overlap strongly (e.g. discrimination between mimics;

difference between distribution means Z 0.5, -) or weakly (e.g.

discrimination between distinct prey types; difference between dis-

tribution means Z 2.0, C). (a) As a result of the influence of abun-
dance on the threshold location, false alarm attacks on S� occur

with high probability when S� are rare relative to other prey and

with low probability when S� are more common. (b) The absolute
number of S� prey attacked, n, varies as a function of false alarm

probability. For S� prey, n is low when they are either rare or com-

mon and highest at intermediate abundance. Data are from a model

in which the total number of S� and SC individuals Z 200, the
number used in Lindström et al.’s (2001) experiments. Number of

S� prey attacked Z 200 ! (1 � a) ! P(FA). Other utility function

parameter values producing (a) and (b): variance of both prey distri-

butions Z 1; benefit of correct detection, h Z 1.0; cost of false
alarm, aZ �1.0; cost of missed detection, m, and benefit of correct

rejection, j Z 0.0.
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attacks at intermediate S� abundance. When S� prey are
very abundant relative to alternative prey, the threshold
will be restrictive, and once again very few false alarm at-
tacks will be made.
Within the associative framework, one way to concep-

tualize this issue may be that when aposemes are more
common, predators must exert greater control over their
own behaviour. This additional control would require
additional associative strength, and so require additional
S� encounters to achieve. This frequency-dependent
behavioural restraint is not captured by the traditional
associative equations. Those equations model the accu-
mulation of association strength of a single stimulus in
isolation, not the optimization of choice between stimuli.
Under signal detection theory, predators attack aposematic
prey because optimizing their behaviour under uncertainty
requires some probability of false alarm. Signal detection
theory predicts that when aposematic prey are relatively
rare, the number of attacks on aposematic preywill increase
as abundance rises to intermediate levels. This prediction is
contrary to traditional expectations, but offers an explana-
tion for the otherwise paradoxical findings of the empirical
data.

FREQUENCY-DEPENDENT SELECTION

Although signal detection theory differs from the other
theories regarding predictions of the number of prey
attacked, it preserves a critical prediction regarding fre-
quency-dependent selection against aposemes. For apose-
matic prey, predation is predicted to be antiapostatic (i.e.
to show a pattern of strong selection against aposemes
when they are rare and weaker selection against them
when they are common; Endler 1988; Lindström et al.
2001). This pattern of selection is considered to be central
to understanding the evolution of aposematism and Mül-
lerian mimicry (i.e. mimicry between aposematic species;
Alatalo & Mappes 1996; Mallet & Joron 1999; Speed
1999). Conspicuousness draws attention, putting rare apo-
semes in danger of extinction, and creating strong pres-
sure for the evolution of a shared appearance between
aposematic species (Sherratt & Beatty 2003). The shared
appearance increases a prey type’s apparent abundance,
and individuals share the costs of conspicuousness among
a larger pool of potential prey. However, the diversity of
aposematic appearance and the existence of mimetic poly-
morphism argue for a relaxation of selective pressure at
some point, and an antiapostatic selection pattern fits
these expectations nicely (Joron & Mallet 1998; Mallet &
Joron 1999). Empirical results support the predicted
frequency-dependent selection (Greenwood et al. 1989;
Mallet & Barton 1989; Speed et al. 2000; Lindström et al.
2001).
The explanation for the antiapostatic pattern tradition-

ally has been based on the constant n assumption. From
Müller’s perspective, for any constant n, the fraction of
the aposeme population killed will be high when the pop-
ulation is small and decline as the population size in-
creases (Mallet & Joron 1999). From the conditioned
learning perspective, low encounter rates with rare
aposematic prey produce a weak association between the
prey’s appearance and the unpalatable reinforcement re-
ceived for attacking the prey item (i.e. poor learning of
the association). For a given level of unpalatability and
similarity of appearance to other prey types, it is therefore
more difficult for a predator to learn to avoid aposematic
prey when such prey are rare, putting rare aposemes at
higher risk of attack than common aposemes (Lindström
et al. 2001).

In contrast, antiapostatic predation is also readily
explained by signal detection theory, although for differ-
ent reasons. The probability of false alarm shows an
antiapostatic pattern (Fig. 2a), which arises from the effect
of the relative abundance of the two prey types on thresh-
old placement (Fig. 1). For given prey appearance and pay-
offs, when S� prey are rare, threshold placement is
permissive because of the low probability of encountering
S� prey. Both the probability of correct detection and the
probability of false alarm are high. When S� prey are com-
mon, however, the predator will be more cautious. The
corresponding threshold is more restrictive, admitting
few false alarms but also fewer correct detections.

EVOLUTION OF APOSEMATISM AND MIMICRY

As an operational account of stimulus discrimination, the
signals approach can be considered to rephrase the fairly
abstract and hypothetical parameters of associative learn-
ing theory, such as stimulus salience and the amount of
associative strength that a stimulus can support, into
functional ecological and behavioural terms representing
the distribution, abundance and quality of resources. For
example, Endler (1988) suggested that antiapostatic selec-
tive pressure might be generated by factors other than
constant n, such as effects of abundance on detectability
(e.g. via search image efficiency) or on profitability (e.g.
from increased practise). Signal detection theory parame-
ters seem to accommodate these additional mechanisms
very well: detectability corresponds to the separation be-
tween signal distributions, and profitability is embodied
in the payoff terms of the utility function (Getty 1985;
Wiley 1994).

The critical event in the predation-driven evolution of
aposematism and mimicry is the predation. If current
models are making inaccurate predictions of the number
of predation events at different prey abundances, then
conclusions based on those numbers may also be in-
accurate. Empirical research indicates that encounters
with cryptic palatable prey influence predation rates on
conspicuous unpalatable prey (Lindström et al. 2001). The
classic approaches to associative learning developed in the
1950s through 1970s, and in common use by behavioural
ecologists today, do not permit such interactions. At-
tempts to model predator psychology based on, for exam-
ple, the Rescorla–Wagner equation (Rescorla & Wagner
1972) or its antecedents (e.g. Speed 1993; Turner & Speed
1996; MacDougall & Dawkins 1998; Speed & Turner 1999;
Servedio 2000) cannot predict the empirical pattern of
variation in aposeme attacks, because they have no mech-
anism of allowing encounters with one stimulus to
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influence the association strength of another. More mod-
ern approaches to associative learning theory (e.g. Miller
& Matzel 1988; Van Hamme & Wasserman 1994; Dicken-
son 2001) are designed to permit such interactions be-
tween stimuli and should prove to be more successful
models of aposeme predation, and of discrimination in
general.
Use of a more appropriate model may change theoret-

ical conclusions. For example, Servedio (2000), using
a classic associative model, concluded that a combination
of extreme parameters (one-trial learning, strong unpalat-
ability and no forgetting) is needed for aposematism to
reach a stable equilibrium unless the aposematic popula-
tion is already at very high abundance. However, interac-
tions between stimuli, such as permitted by modern
associative learning theory or signal detection theory,
could allow for less extreme parameter values to more eas-
ily support the evolution of aposematism.
Signal detection theory has several natural strengths

that suggest that it could be a powerful tool for in-
vestigating the role of receiver learning in the evolution
of both aposematism and mimicry. In addition to permit-
ting encounters with one stimulus to influence reactions
to another, and the straightforward ecological interpreta-
tion afforded by the three signal parameters relative to
that of the more abstract associative learning parameters,
signal detection theory can permit relaxation of an
assumption widespread in models of mimicry (Getty
1985). Current models of the evolution of Müllerian mim-
icry are based on classic associative learning theory and
also assume perfect morphological similarity between
model and mimic (e.g. Turner et al. 1984; Speed 1993;
Turner & Speed 1996; MacDougall & Dawkins 1998; Speed
& Turner 1999). This assumption of identical stimuli mit-
igates the lack of interaction between associative strengths
of the stimuli, because distinguishing between the stimuli
is impossible. However, if real predators have any ability
to distinguish between real mimics and models, then the
classic associative models are no longer appropriate. Un-
like even modern associative theories, signal detection
theory was developed specifically for situations in which
animals experience uncertainty about whether to respond
to one stimulus (e.g. an aposematic model) or another
(e.g. a mimic, whatever its palatability).
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