Radicals, like fractions, often need to be combined and reduced

EXAMPLES- Combining Radicals with Different with Different Indices

Combining Radicals of the Same Index.
The Goal is to have only a single radical sign. (assume all variables are positive.)

Observe that we are Adding Terms with the same Radical....

Examples

a) $\sqrt{50}-\sqrt{8}$

$$
\begin{aligned}
& =\sqrt{25 \cdot 2}-\sqrt{4 \cdot 2} \\
& =5 \sqrt{2}-2 \sqrt{2} \\
& =3 \sqrt{2}
\end{aligned}
$$

b) $\sqrt[3]{24 x}-\sqrt[3]{81 x}$

$$
\begin{aligned}
& =\sqrt[3]{8 \cdot 3 x}-\sqrt[3]{27 \cdot 3 x} \\
& =2 \sqrt[3]{3 x}-3 \sqrt[3]{3 x} \\
& =-\sqrt[3]{3 x}
\end{aligned}
$$

c) $\sqrt[4]{4 y^{3}} \cdot \sqrt[4]{12 y^{2}}$

$$
\begin{aligned}
& =\sqrt[4]{48 \cdot y^{5}} \\
& =\sqrt[4]{16 y^{4} \cdot 3 y} \\
& =2 y \sqrt[4]{3 y}
\end{aligned}
$$

Recall: Combining Radicals with Different Indices.

The Goal is to have only a single radical sign. (assume all variables are positive.)

Observe that we are Multiplying Terms with the same Exponent....

Examples

a) $\sqrt[3]{2} \cdot \sqrt{3}$

$$
\begin{aligned}
& =2^{1 / 3} \cdot 3^{1 / 2} \\
& =2^{2 / 6} \cdot 3^{3 / 6} \\
& =\left(2^{2} \cdot 3^{3}\right)^{1 / 6} \\
& =\sqrt[6]{2^{2} \cdot 3^{3}} \\
& =\sqrt[6]{108}
\end{aligned}
$$

b) $\sqrt[3]{y} \cdot \sqrt[4]{2 y}$

$$
\begin{aligned}
& =y^{1 / 3}(2 y)^{1 / 4} \\
& =y^{4 / 12}(2 y)^{3 / 12} \\
& =\sqrt[11]{y^{4} \cdot(2 y)^{3}} \\
& =\sqrt[12]{8 y^{7}}
\end{aligned}
$$

c) $\sqrt{\sqrt[3]{2}}$

$$
\begin{aligned}
& =\left(2^{1 / 3}\right)^{1 / 2} \\
& =2^{1 / 6} \\
& =\sqrt[6]{2}
\end{aligned}
$$

Getting Expressions to a single base.

Issue. Sometimes we want an exponential expression in terms of a Predefined Base.

Use properties of exponents to write the following expressions in the form $2^{k x}$ for a suitable k
(a) $4^{5 x / 2}=\left(2^{2}\right)^{5 x / 2}=2^{5 x} \quad \Longrightarrow k=5$
(b) $\left(2^{4 x} \cdot 2^{-x}\right)^{1 / 2}=\left(2^{4 x-2}\right)^{1 / 2}=\left(2^{3 x}\right)^{1 / 2}=2^{(3 / 2) x} \quad \Longrightarrow k=\frac{3}{2}$
(c) $\frac{10^{x}}{5^{x}}=\frac{(2 \cdot 5)^{x}}{5^{x}}=\frac{2^{x} \cdot 5^{x}}{5^{x}}=2^{x} \quad \Longrightarrow k=1$
(d) $8^{x / 3} \cdot 16^{3 x / 4}=\left(2^{3}\right)^{x / 3} \cdot\left(2^{4}\right)^{3 x / 4}=2^{x} \cdot 2^{3 x}=2^{4 x} \quad \Longrightarrow k=4$
(e) usage: Solve $7 \cdot 2^{6-3 x}=28$

$$
\Rightarrow 2^{6-3 x}=4=2^{2} .
$$

Since the Bases are the Same $\Rightarrow 6-3 x=2$
Hence $x=4 / 3$

Issue. Sometimes we want an exponential expression with just a single x in the exponent.
(a) Determine the base b so that $5^{3 x}=b^{x}$.

$$
5^{3 x}=\left(5^{3}\right)^{x}=125^{x} \Rightarrow b=125
$$

