EXAMPLES- Combining Radicals with Different with Different Indices

Combining Radicals of the Same Index.

The Goal is to have only a single radical sign. (assume all variables are positive.)

Observe that we are Adding Terms with the same Radical....

Examples

a)
$$\sqrt{50} - \sqrt{8}$$

= $\sqrt{25 \cdot 2} - \sqrt{4 \cdot 2}$
= $5\sqrt{2} - 2\sqrt{2}$
= $3\sqrt{2}$

b)
$$\sqrt[3]{24x} - \sqrt[3]{81x} = \sqrt[3]{8 \cdot 3x} - \sqrt[3]{27 \cdot 3x} = 2\sqrt[3]{3x} - 3\sqrt[3]{3x} = -\sqrt[3]{3x}$$

c)
$$\sqrt[4]{4y^3} \cdot \sqrt[4]{12y^2}$$

= $\sqrt[4]{48 \cdot y^5}$
= $\sqrt[4]{16y^4 \cdot 3y}$
= $2y\sqrt[4]{3y}$

Recall: Combining Radicals with Different Indices.

The Goal is to have only a single radical sign. (assume all variables are positive.)

Observe that we are Multiplying Terms with the same Exponent....

Examples

a)
$$\sqrt[3]{2} \cdot \sqrt{3}$$

= $2^{1/3} \cdot 3^{1/2}$
= $2^{2/6} \cdot 3^{3/6}$
= $(2^2 \cdot 3^3)^{1/6}$
= $\sqrt[6]{2^2 \cdot 3^3}$
= $\sqrt[6]{108}$

b)
$$\sqrt[3]{y} \cdot \sqrt[4]{2y}$$

= $y^{1/3} (2y)^{1/4}$
= $y^{4/12} (2y)^{3/12}$
= $\sqrt[12]{y^4 \cdot (2y)^3}$
= $\sqrt[12]{8y^7}$

c)
$$\sqrt[3]{2}$$
 = $(2^{1/3})^{1/2}$
= $2^{1/6}$
= $\sqrt[6]{2}$

Getting Expressions to a single base.

- **Issue.** Sometimes we want an exponential expression in terms of a Predefined Base.
- Use properties of exponents to write the following expressions in the form 2^{kx} for a suitable k

(a)
$$4^{5x/2} = (2^2)^{5x/2} = 2^{5x} \implies k = 5$$

(b) $(2^{4x} \cdot 2^{-x})^{1/2} = (2^{4x-2})^{1/2} = (2^{3x})^{1/2} = 2^{(3/2)x} \implies k = \frac{3}{2}$
(c) $\frac{10^x}{5^x} = \frac{(2 \cdot 5)^x}{5^x} = \frac{2^x \cdot 5^x}{5^x} = 2^x \implies k = 1$
(d) $8^{x/3} \cdot 16^{3x/4} = (2^3)^{x/3} \cdot (2^4)^{3x/4} = 2^x \cdot 2^{3x} = 2^{4x} \implies k = 4$
(e) usage: Solve $7 \cdot 2^{6-3x} = 28$

 $\Rightarrow 2^{6-3x} = 4 = 2^2$. Since the Bases are the Same $\Rightarrow 6-3x=2$ Hence x=4/3

- **Issue.** Sometimes we want an exponential expression with just a single x in the exponent.
 - (a) Determine the base b so that $5^{3x} = b^x$.

$$5^{3x} = (5^3)^x = 125^x \Rightarrow b = 125$$