What are $\frac{0}{0}$ and $\frac{\infty}{\infty}$?

Answer: M.W. = MORE WORK The problem is NOT DONE .
The more work is often Algebra!

These expressions mean More Work.

$$
\begin{array}{ccc}
\frac{0}{0} & \frac{\infty}{\infty} & 0 \cdot \infty \\
\infty-\infty & 0 \cdot \infty & 0^{\infty}
\end{array}
$$

You should know the following (\# denotes a non-zero number)
When you Plug-in and get these - you are done.
a) $\frac{0}{\#}=0$
b) $\frac{\#}{0}=\infty$
c) $\frac{0}{\infty}=0$
d) $\frac{\#}{\infty}=0$
e) $\frac{\infty}{\#}=\infty$
f) $\frac{\infty}{0}=\infty$

You should think of ∞ As A Number. It is a legitimate answer.

Recall: What is the value of the expression $\frac{2+x}{x-1}$ when $x=5$? Answer: $\frac{2+x}{x-1} \Longrightarrow \frac{2+5}{5-1}=\frac{7}{4} \quad$ Just plug in. Get a number \Rightarrow done.

Example: What is the value of the expression $\frac{x^{2}-3 x+2}{x^{2}-2 x+1}$ when $x=1$? Attempt $: \Longrightarrow \frac{1-3+2}{1-2+1}=\frac{0}{0}$

- Need to do MORE WORK

Example: What is the value of the expression $\frac{2 x^{2}+3 x}{4 x+5 x^{2}}$ when $x=\infty$? Attempt: $\frac{2 x^{2}+3 x}{4 x+5 x^{2}} \Longrightarrow \frac{2 \cdot \infty^{2}+3 \cdot \infty}{4 \cdot \infty+5 \cdot \infty}=\frac{\infty}{\infty} \quad$ - Need to do MORE WORK

Example: What is the value of the expression $\frac{2 x^{2}+3 x}{4 x+5 x^{2}}$ when $x=0$? Attempt: $\frac{2 x^{2}+3 x}{4 x+5 x^{2}} \Longrightarrow \frac{2 \cdot 0^{2}+3 \cdot 0}{4 \cdot 0+5 \cdot 0}=\frac{0}{0} \quad$ - Need to do MORE WORK

Example: What is the value of the expression $\frac{x^{2}-3 x+2}{x^{2}-2 x+1}$ when $x=1$?
Technique: Factor - Cancel - Plugin - Get Answer

$$
\begin{aligned}
\frac{x^{2}-3 x+2}{x^{2}-2 x+1} & =\frac{(x-1)(x-2)}{(x-1)(x-1)} & & \text { Factor } \\
& =\frac{(x-2)}{(x-1)} & & \text { Cancel } \\
& =\frac{(1-2)}{(x-1)}=\frac{-1}{0} & & \text { Plug in } \\
& =-\infty & & \text { Answer }
\end{aligned}
$$

THIS is a legitimate answer!

Example: Evaluate $\frac{2 x^{2}+3 x}{4 x+5 x^{2}}$ at $x=\infty$?
Technique: Divide by a Power of x - Plug In - Get Answer

$$
\begin{array}{rlrl}
\frac{2 x^{2}+3 x}{4 x+5 x^{2}} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} & =\frac{2+\frac{3}{x}}{\frac{4}{x}+5} & & \text { Divide by "highest exponent" } \\
& =\frac{2+\frac{3}{\infty}}{\frac{4}{\infty}+5}=\frac{2}{5} & & \text { of } x \text { in denominator } \\
& & \text { Use } \frac{\#}{\infty}=\mathbf{0}
\end{array}
$$

Example: Evaluate $\frac{2 x^{2}+3 x}{4 x+5 x^{2}}$ at $x=0$?
Technique: Divide by a Power of x - Plug In - Get Answer

$$
\begin{aligned}
\frac{2 x^{2}+3 x}{4 x+5 x^{2}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} & =\frac{2 x+3}{4+5 x} & \begin{array}{l}
\text { Divide by "lowest exponent" } \\
\\
\end{array} & \frac{2 \cdot 0+3}{4+5 \cdot 0}=\frac{3}{4}
\end{aligned}
$$

Difference quotient example 1

Example: Evaluate $\frac{f(x+h)-f(x)}{h}$ at $h=0$ for $f(x)=2 x+3$
Note: If you plug in $h=0$ first, you will get $\frac{f(x+0)-f(x)}{0}=\frac{0}{0}$

Technique: Use Algebra to Simplify - Cancel an h-Get Answer

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{(2(x+h)+3)-(2 x+3)}{h} \\
& =\frac{2 x+2 h+3-2 x-3}{h} \\
& =\frac{2 h}{h} \\
& =2
\end{aligned}
$$

Digression - Recall

$f(x)$ is Pronounced "f of x ".
It does Not mean "f times x"

Digression - Recall

$$
f(x)=x^{2}+3 x+1
$$

SAYS
USE THE EXPRESSION $x^{2}+3 x+1$
TO CALCULATE THE VALUE of $f(x)$

Illustration

$$
\left.\begin{array}{rlrl}
\mathrm{f}(3) & = & 3^{2}+5 \cdot(3)+1 & =9+15+1
\end{array}\right)=25
$$

To Calculate $f(3)$ - Substitute 3 into the Expression - get 25 .

To Calculate $f(-2)$ - Substitute -2 into the Expression - get -5 .

To Calculate $f(x+h)$ - Substitute $x+h$ into the Expression - get the above answer.

Digression

The Difference Quotient is: $\frac{f(x+h)-f(x)}{h}$.
It means - You will be GIVEN an Expression for $f(x)$.

Then, CALCULATE $f(x+h)$ - and get a another expression.

Then, SUBTRACT the two expressions

Then, DIVIDE by h

Difference quotient example 2

Example: Evaluate $\frac{f(x+h)-f(x)}{h}$ at $h=0$ for $f(x)=x^{2}+5 x+3$
Technique: Use Algebra to Simplify - Cancel an h-Get Answer

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\left((x+h)^{2}+5(x+h)+3\right)-\left(x^{2}+5 x+3\right)}{h} \\
& =\frac{x^{2}+2 x h+h^{2}+5 x+5 h+3-x^{2}-5 x-3}{h} \\
& =\frac{2 x h+h^{2}+5 h}{h} \\
& =2 x+h+5 \quad \text { Canceling } \\
& =2 x+5
\end{aligned}
$$

NOTICE - the answer may still have "x" in it. (It does not have to be a number as in the previous example.)

