Exponent and Radicals - Rules for Manipulation

Algebraic Rules for Manipulating Exponential and Radicals Expressions.
In the following, n, m, k, j are arbitrary they can be integers or rationals or real numbers.

$$
\begin{array}{cl}
\frac{b^{n} \cdot b^{m}}{b^{k}}=b^{n+m-k} & \begin{array}{l}
\text { Add exponents in the numerator and } \\
\text { Subtract exponent in denominator. }
\end{array} \\
\left(\frac{a^{n} \cdot b^{m}}{c^{k}}\right)^{j}=\frac{a^{n \cdot j} \cdot b^{m \cdot j}}{c^{k \cdot j}} & \begin{array}{l}
\text { The exponent outside the parenthese } \\
\text { Multiplies the exponents inside. }
\end{array} \\
\left(\frac{a^{n}}{b^{m}}\right)^{-1}=\frac{b^{m}}{a^{n}} & \text { Negative exponent "flips" a fraction. } \\
b^{0}=1 & b=b^{1}
\end{array} \begin{aligned}
& \text { Don't forget these }
\end{aligned}
$$

Convert Radicals to Exponent notation

$$
\begin{aligned}
\sqrt{a} & =a^{1 / 2} \\
\sqrt[m]{a} & =a^{1 / m} \\
\sqrt[m]{a^{n}} & =a^{n / m}
\end{aligned}
$$

Radicals - Reducing

$$
\begin{aligned}
\sqrt{a^{2} \cdot b} & =a \sqrt{b} & \text { Remove squares from inside } \\
\sqrt[m]{a^{m} \cdot b} & =a \sqrt[m]{b} &
\end{aligned}
$$

Exponent and Radicals - Solving Equations

$x^{n / m}=y \Leftrightarrow x=y^{m / n}$	Solve a power by a root
Solve a root by a power	

Example

a) Simplify $\left(\frac{2}{5}\right)^{3}$

Method $\quad\left(\frac{2}{5}\right)^{3}=\frac{2^{3}}{5^{3}}=\frac{2 \cdot 2 \cdot 2}{5 \cdot 5 \cdot 5}=\frac{\mathbf{8}}{\mathbf{1 2 5}}$
b) Simplify $\left(\frac{2 \cdot 3^{2}}{5^{3}}\right)^{2}$

Method $\left(\frac{2 \cdot 3^{2}}{5^{3}}\right)^{2}=\frac{2^{2} \cdot 3^{2 \cdot 2}}{5^{3 \cdot 2}}=\frac{4 \cdot 81}{15,625}=\frac{\mathbf{3 2 4}}{\mathbf{1 5 , 6 2 5}}$

Illustration: where is the negative?
c) Simplify $(-3)^{4}$ (the 'negative' is inside the parentheses)

Method $\quad(-3)^{4}=(-3) \cdot(-3) \cdot(-3) \cdot(-3)=81$
d) Simplify $-(3)^{4}$ (the 'negative' is outside the parentheses)

Method $\quad-(3)^{4}=-(3) \cdot(3) \cdot(3) \cdot(3)=-\mathbf{8 1}$
e) Simplify $\left(\frac{2}{5}\right)^{-3}$ (the 'negative' is in the exponent)

$$
\text { Method } \quad \begin{aligned}
\left(\frac{2}{5}\right)^{-3} & =\frac{1}{(2 / 5)^{3}}=\left(\text { or }=\left(\frac{5}{3}\right)^{3}\right)=\frac{5^{3}}{2^{3}} \\
& =\frac{\mathbf{1 2 5}}{\mathbf{8}}
\end{aligned}
$$

More Examples
f) Simplify $\frac{x^{3} \cdot x^{7}}{x^{5}}$

Method

$$
\frac{x^{3} \cdot x^{7}}{x^{5}}=x^{3+7-5}=\mathbf{x}^{\mathbf{5}}
$$

g) Simplify $\left(2 a^{3} b^{2}\right)\left(3 a b^{4}\right)^{3}$

$$
\text { Method } \quad \begin{aligned}
\left(2 a^{3} b^{2}\right)\left(3 a b^{4}\right)^{3} & =2 a^{3} b^{2} \cdot 3^{3} a^{3} b^{4 \cdot 3} \\
& =(2 \cdot 27)\left(a^{3+3}\right)\left(b^{2+12}\right) \\
& =\mathbf{5 4 a}^{\mathbf{6}} \mathbf{b}^{\mathbf{1 4}}
\end{aligned}
$$

h) Simplify $\left(\frac{x}{y}\right)^{3}\left(\frac{y^{2} x}{z}\right)^{4}$ (give answer with only positive exponents)

Method

$$
\begin{aligned}
\left(\frac{x}{y}\right)^{3}\left(\frac{y^{2} x}{z}\right)^{4} & =\frac{x^{3}}{y^{3}} \cdot \frac{y^{2 \cdot 4} x^{4}}{z^{4}} \\
& =\frac{x^{3+4} y^{8-3}}{z^{4}}=\frac{\mathbf{x}^{7} \mathbf{y}^{\mathbf{5}}}{\mathbf{z}^{4}}
\end{aligned}
$$

More Examples with negatives
i) Simplify $\frac{6 s t^{-4}}{2 s^{-2} t^{2}}$ (give answer with only positive exponents)

Negative exponents flip location: A negative exponent in the numerator moves to the denominator. And a negative exponent in the denominator moves to the numerator.

Method

$$
\frac{6 s t^{-4}}{2 s^{-2} t^{2}}=\frac{6 s s^{2}}{2 t^{4} t^{2}}=\frac{3 \mathbf{s}^{3}}{\mathbf{t}^{\mathbf{6}}}
$$

j) Simplify $\left(\frac{y}{3 z^{3}}\right)^{-2}$ (give answer with only positive exponents)

A Negative exponent 'flips' the fraction.
Method $\quad\left(\frac{y}{3 z^{3}}\right)^{-2}=\left(\frac{3 z^{3}}{y}\right)^{2}=\frac{\mathbf{9 z}^{\mathbf{6}}}{\mathbf{y}^{\mathbf{2}}}$

More Examples
k) Simplify $\frac{\left(2 x^{3}\right)^{2}\left(3 x^{4}\right)}{\left(x^{3}\right)^{4}}$

$$
\text { Method } \begin{aligned}
\frac{\left(2 x^{3}\right)^{2}\left(3 x^{4}\right)}{\left(x^{3}\right)^{4}} & =\frac{2^{2} x^{3 \cdot 2} \cdot 3 x^{4}}{x^{3 \cdot 4}} \\
& =\frac{(4 \cdot 3) x^{6} x^{4}}{x^{12}}=12 x^{6+4-12}=\frac{\mathbf{1 2}}{\mathbf{x}^{\mathbf{2}}}
\end{aligned}
$$

Examples Simplifying Roots
a) Simplify $\sqrt{8}$

Method

$$
\sqrt{8}=\sqrt{4 \cdot 2}=2 \sqrt{2}
$$

b) Simplify $\sqrt{75}$

Method

$$
\sqrt{75}=\sqrt{25 \cdot 3}=5 \sqrt{3}
$$

c) Simplify $\sqrt[3]{x^{4}}$

Method

$$
\sqrt[3]{x^{4}}=\sqrt[3]{x^{3} \cdot x}=\mathbf{x} \sqrt[3]{x}
$$

d) Simplify $\sqrt[4]{81 x^{8} y^{4}}$

Method $\quad \sqrt[4]{81 x^{8} y^{4}}=\sqrt[4]{81} \sqrt[4]{x^{8}} \sqrt[4]{y^{4}}=\mathbf{3 x}^{\mathbf{2}} \mathbf{y}$
Digression: Technically $\sqrt{x^{2}}=|x|$ and $\sqrt[4]{x^{4}}=|x|$ but we will not worry about that at this time.

More Examples

e) Simplify $\sqrt{32}+\sqrt{200}$

$$
\text { Method } \quad \begin{aligned}
\sqrt{32}+\sqrt{200} & =\sqrt{16 \cdot 2}+\sqrt{100 \cdot 2} \\
& =4 \sqrt{2}+10 \sqrt{2}=\mathbf{1 4} \sqrt{\mathbf{2}}
\end{aligned}
$$

f) Simplify $\sqrt{25 b}-\sqrt{b^{3}}$

Method $\quad \sqrt{25 b}-\sqrt{b^{3}}=\sqrt{25 \cdot b}+\sqrt{b^{2} \cdot b}$

$$
=5 \sqrt{b}-b \sqrt{b}=(\mathbf{5}-\mathbf{b}) \sqrt{\mathbf{b}}
$$

