Exponent and Radicals - Rules for Manipulation

Algebraic Rules for Manipulating Exponential and Radicals Expressions.

In the following, n, m, k, j are arbitrary -

they can be integers or rationals or real numbers.

$\frac{b^n \cdot b^m}{b^k} = b^{n+m-k}$	Add exponents in the numerator and Subtract exponent in denominator.
$\left(\frac{a^n \cdot b^m}{c^k}\right)^j = \frac{a^{n \cdot j} \cdot b^{m \cdot j}}{c^{k \cdot j}}$	The exponent outside the parentheses Multiplies the exponents inside.
$\left(\frac{a^n}{b^m}\right)^{-1} = \frac{b^m}{a^n}$	Negative exponent "flips" a fraction.
$b^0 = 1 \qquad b = b^1$	Don't forget these

Convert Radicals to Exponent notation

 $\sqrt{a} = a^{1/2}$ $\sqrt[m]{a} = a^{1/m}$ $\sqrt[m]{a^n} = a^{n/m}$

Radicals - Reducing

 $\sqrt{a^2 \cdot b} = a\sqrt{b}$ Remove squares from inside $\sqrt[m]{a^m \cdot b} = a\sqrt[m]{b}$

Exponent and Radicals - Solving Equations

 $x^{n/m} = y \Leftrightarrow x = y^{m/n}$ Solve a power by a root Solve a root by a power Example

a) Simplify
$$\left(\frac{2}{5}\right)^3$$

Method $\left(\frac{2}{5}\right)^3 = \frac{2^3}{5^3} = \frac{2 \cdot 2 \cdot 2}{5 \cdot 5 \cdot 5} = \frac{8}{125}$
b) Simplify $\left(\frac{2 \cdot 3^2}{5^3}\right)^2$
Method $\left(\frac{2 \cdot 3^2}{5^3}\right)^2 = \frac{2^2 \cdot 3^{2 \cdot 2}}{5^{3 \cdot 2}} = \frac{4 \cdot 81}{15,625} = \frac{324}{15,625}$

Illustration: where is the negative?

- c) Simplify $(-3)^4$ (the 'negative' is inside the parentheses) Method $(-3)^4 = (-3) \cdot (-3) \cdot (-3) \cdot (-3) = 81$
- d) Simplify $-(3)^4$ (the 'negative' is outside the parentheses)

Method
$$-(3)^4 = -(3) \cdot (3) \cdot (3) \cdot (3) = -81$$

e) Simplify $\left(\frac{2}{5}\right)^{-3}$ (the 'negative' is in the exponent)

Method
$$\left(\frac{2}{5}\right)^{-3} = \frac{1}{(2/5)^3} = (or = \left(\frac{5}{3}\right)^3) = \frac{5^3}{2^3}$$

$$=\frac{125}{8}$$

=

More Examples

f) Simplify
$$\frac{x^3 \cdot x^7}{x^5}$$

Method $\frac{x^3 \cdot x^7}{x^5} = x^{3+7-5} = \mathbf{x^5}$

g) Simplify
$$(2a^3b^2)(3ab^4)^3$$

Method $(2a^3b^2)(3ab^4)^3 = 2a^3b^3$

ethod
$$(2a^3b^2)(3ab^4)^3 = 2a^3b^2 \cdot 3^3a^3b^{4\cdot 3}$$

$$= (2 \cdot 27)(a^{3+3})(b^{2+12})$$

$$= 54a^{6}b^{14}$$

h) Simplify
$$\left(\frac{x}{y}\right)^3 \left(\frac{y^2 x}{z}\right)^4$$
 (give answer with only positive exponents)
Method $\left(\frac{x}{y}\right)^3 \left(\frac{y^2 x}{z}\right)^4 = \frac{x^3}{y^3} \cdot \frac{y^{2\cdot 4} x^4}{z^4}$
 $= \frac{x^{3+4} y^{8-3}}{z^4} = \frac{\mathbf{x}^7 \mathbf{y}^5}{\mathbf{z}^4}$

More Examples with negatives

i) Simplify
$$\frac{6st^{-4}}{2s^{-2}t^2}$$
 (give answer with only positive exponents)

Negative exponents flip location: A negative exponent in the numerator moves to the denominator. And a negative exponent in the denominator moves to the numerator.

Method
$$\frac{6st^{-4}}{2s^{-2}t^2} = \frac{6ss^2}{2t^4t^2} = \frac{3s^3}{t^6}$$

j) Simplify $\left(\frac{y}{3z^3}\right)^{-2}$ (give answer with only positive exponents)

A Negative exponent 'flips' the fraction.

Method
$$\left(\frac{y}{3z^3}\right)^{-2} = \left(\frac{3z^3}{y}\right)^2 = \frac{9z^6}{y^2}$$

More Examples

k) Simplify
$$\frac{(2x^3)^2(3x^4)}{(x^3)^4}$$

Method $\frac{(2x^3)^2(3x^4)}{(x^3)^4} = \frac{2^2x^{3\cdot 2} \cdot 3x^4}{x^{3\cdot 4}}$
$$= \frac{(4\cdot 3)x^6x^4}{x^{12}} = 12x^{6+4-12} = \frac{12}{x^2}$$

Examples Simplifying Roots

a) Simplify $\sqrt{8}$

Method
$$\sqrt{8} = \sqrt{4 \cdot 2} = 2\sqrt{2}$$

b) Simplify $\sqrt{75}$

Method
$$\sqrt{75} = \sqrt{25 \cdot 3} = 5\sqrt{3}$$

- c) Simplify $\sqrt[3]{x^4}$
 - Method

$$\sqrt[3]{x^4} = \sqrt[3]{x^3} \cdot x = \mathbf{x}\sqrt[3]{x}$$

- d) Simplify $\sqrt[4]{81x^8y^4}$
 - $\sqrt[4]{81x^8y^4} = \sqrt[4]{81}\sqrt[4]{x^8}\sqrt[4]{y^4} = \mathbf{3x^2y}$ Method

Digression: Technically $\sqrt{x^2} = |x|$ and $\sqrt[4]{x^4} = |x|$ but we will not worry about that at this time.

More Examples

- e) Simplify $\sqrt{32} + \sqrt{200}$ Method $\sqrt{32} + \sqrt{200} = \sqrt{16 \cdot 2} + \sqrt{100 \cdot 2}$ $= 4\sqrt{2} + 10\sqrt{2} = \mathbf{14}\sqrt{2}$
- f) Simplify $\sqrt{25b}-\sqrt{b^3}$

Method
$$\sqrt{25b} - \sqrt{b^3} = \sqrt{25 \cdot b} + \sqrt{b^2 \cdot b}$$

= $5\sqrt{b} - b\sqrt{b} = (\mathbf{5} - \mathbf{b})\sqrt{\mathbf{b}}$