Canonical number systems for complex integers

By I. KATAI and J. SZABO in Budapest

1. It is a well-known fact that every non-negative integer N has a  unique re-
presentation of the form
(L.D N=a+ad+...+a.d,

where the integers a; are selected from the set {0,1, ..., A—1}, and 4 is an integer,
A=2. Furthermore, choosing a negative integer — A (4=2), we can represent every
integer N as a sum: .

(12) N=ayta(—A)+..+a(-A4f 0=a,=4—1 (j=0,1,..,k—1),

where a; are integers. The representation (1.2) is also unique.

The number systems of negative base have some applications in the theory of
computations.

The following question seems to be interesting: Given a Gaussian integer 9,
can we represent every Gaussian integer o in the form

(1.3 o=ro+rd+..+rd

or not? Here r;€U, A being a fixed complete residue system mod 9.
If the answer is affirmative, we say that (9, o) is a number system.
We shall investigate only the case =9, where

(1.9 AW ={0,1,..., N(9)—1},
and N(9) denotes the “norm”
N® = 9-3 = (Re )2+ (Im )%

It is known that for 9=—1+1i, (&, W) is a number system; see [1]
We prove:

Theorem 1. (3, W) is a number system if and only if
a) Red<0 and b) ImI=-1.

For 9= —A=+i the representation of o in the form (1.3) is unique.
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Theorem 2. Let 9= —Ad=i, z an arbitrary complex number. Then

a., a.
«(1.5) z=q%4 ... +a -I-Tl4-9—22-l- oo

where a;e¥W, (j=1,1—1, ...,0, —1, =2, ...).
We do not assert the uniquencss of the representation of z in the form (1.5).
2. Proof of Theorem 1. Necessity. Let 9=A+ Bi. Then
Wy ={0,1, ..., 4% B*—1}.

It is obvious that 2, must be a complete residue system mod 9 if (9, ) is a
number system. In the opposite case there is an « which is incongruent to &k for
every k in 2, but from (1.3) a =ry(mod 93), €A, follows, and this is a contradiction.

Suppose that 4=0. We prove that a=(1—4)+iB=1 —3 has no representation
of type (1.3). Suppose in the contrary that

(2.1) o = ’.0+r119+'.--+rk19k.
Let
' 0=0a(l—9) = (1—A)P+B% = A>+B*—24+1.

Since 4=1, we have g€W,. From (2.1) we get
Q=ro+(ri—rg) 9+ ... +(r—Fe—) S —r JHL,
Hence g=r,mod 3, and by €, rycA, we get: g=ry. So
ri—re) S+ ... + (e —rr_) F—r 9+ = 0.
Hence it follows immediately that
ri—ro=0,...,n,—r_1=0, =0,

whence rp=r,_;=...=r;=ry=0. Therefore ¢=0, and so A=1, B=0. But it is
obvious that 3=1 is not a base of a number system. Similarly, 3= +i(4=0, B=%1)
is not a base of a number system, either.

Let now Im 9=B41. Let us take into account that B is a divisor of Im &°
(v=1, 2, ...). Hence, for an « of (1.3) we get:

Ima =r,Im3+... +r,Im ¥,
and so B|Im a. Consequently, (1.3) will not hold for a=i (B +1).

Sufficiency. Let now 3= —A4+i (A=1). Then U, is a complete residue system
mod 9 as it is well known. Let us take into account, that

(2.2) 924249+ A2+1 = 0.
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Let a=E+ Fi be an arbitrary Gaussian integer. Taking D=F, C=E+ AF, we gel
(2.3) o = C+D9.
First we prove that every o has the form
(24) o= U+VI+X92+ Y9,
where U, V, X, Y are non-negative integers, From (2.2) we have
—1 = 924249+ 42.

Assuming that C<0 we can substitute C in (2.3) by

|C|-92+24|C|- 9+ 42|C]|.

In the case D<0 we take a similar substitution, and get (2.4).
We shall use the following relation:

2.5 A?+1 = PB+24-1) 2+ (4-1)28.

Let

(2.6) a=dy+d3+...+d¥ (k=3), di=0 (j=0,..,k).
Let

2.7 t(o, d) = dy+di+...+d,;

t(a, d) is a non-negative integer, #(«, d)=0 only if a=0.
We take
dy = ry+IN(9) = ro+1(4%4+1),

t=0, integer, 0=r,=42. From (2.5) we have
2.8) dy = rg+t(A%+1) = ry+-1(A4—1)29+1(24—1) 92+ 193,
We take the right hand side of (2.8) into (2.6). Then
o =ro+(d+1(4—1))9 + (do+ 124 — 1))+ (dy+ 1) B+ dy 9 + ... + d 9% =

29) =df+df S+ ... +df 9.
Since
—t(A+12+t(A—-1)2+t24—-1)+¢ =0,

therefore

to, d*) =df+ ... +df =t(o, d), df=0 (Gj=0,..,k).
Let
(2.10) oy = dif +df 9+ ... +df ¥
6 A
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We have
@2.11) a=od+try (r€No),
t(o, d*) = dff +dif + ... - d.

It is obvious that t(xy, d*)<t(a, d), when ry#0. For ro=0, t(0y, d*)=t(a, d).
Now we write #(x, d)=1t(x), £(oy, d*)=1t(y),.... We repeat thc algorithm
2.9), (2.11):

o = Otl'g-l-l’o, oy = 062'9-!—)'1, veey aj_-l = Otj'g-l-l'j_l (riEQIO)'

Then f(a)=t(o)=... and #(a)>1(e; ) when r;520. This process is terminated
at the jth step if o,=0. In this case we get

d=r0+r19+...+rj_1!9‘i_1 (riEQIO).
Suppose that the process is not terminated. Then for a suitably large i

1@ = 10540 = .. (0).

0 = 01y oos Uyppog = oS

Hence

and, therefore, $*o; (k=1, 2, ...). This holds only if &;=0.
We proved the existence of the representation of o in the form (1.3).
Let us suppose now that there is an o wich has two different representations:

o =rg+rd+...+r = so+59+...+5.9,  r,86U,.

Then 0=(ry—so)+(r—s)9+...+(—s5,)9 and therefore ry=s5,mod 9; as r,
So€ Uy we get ry=s,. Dividing by 9, we get

0=(r—s)+ ... +(r—s) ¥ L
We repeat the argument. Finally we get:
ro - So, rl B S]_, veey I‘k = 'Sk'

We have proved the theorem for $=—A4+i.
Let now 9= —A—i. Using the theorem for 3=—A+i, we get

&=r0+r1g+...+rkg" (riEQI())
for every Gaussian integer & Hence
o= r0+r1|9+ PR -I-rk'gk,

and so the theorem holds for 3= —A4 —i, too.
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3. Proof of Theorem 2. Let z be an arbitrary complex number, z=x+iy. Let

3.1 8 = U, +iV,.
We have

9k U, V. C.+D,i ) c.
62 | z=Ip= (X+ly)§kk+z D _ "Bk i ﬁg-:,z)

where Cy, D, are rational integers, |u|<1, |v|<1. Let

(3.3) z,‘:C"%k’D", 5,‘:%%’“—".

It is obvious that J,-~0 (k—o<), and so z,—z. Since C,+iD, is a Gaussian integer,
by Theorem 1 we have
3.4 C,+iD, = af¥+...+df, t=1t(k).

First we prove that the sequence #(k)—k (k=1,2,...) has an upper bound.

Indeed, from (3.4)
=q gt k_l_ —|—a*9 k

Hence
* *
(3.5) YR L hd = z— ”’51 _%,
and so
*
a9kt | = lzk[+“|"gll+ g =
(3.6)
1 1 A?
2 = —_
|| + (64| + 4 [l9l lglz"" ] = |2]+104] + =1

Hence it follows that
3.7 laf 9=+ ... +af| =,
c=c(z) being a suitable positive constant.
Since the representation of Gaussian integers in the form (1.3) is unique, and

the circle |w|=c contains only a finite set of Gaussian integers, therefore #(k)—k
has an upper bound. Let K be an integer, t—k=K. Then we can write z; as

( ) (k)

(3.8) 7, = a9+ .. +a"‘)+—9—+?+

where ag.")EQIO (j=K, K-1, ...,0, —1, ...). Let b€, be an integer so that a%‘)=
=by for infinitely many k. Let S be the subset of those integers k satisfying a®=

6*
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b€y, such that for infinitely many k in Sy, af®=5,. Let S, be the set of these
k’s. S; has infinitely many elements. We repeat this argument for K, K—1, ... 0,
—1,.... Letl

=by,. Suppose that S, ..., S is construcied (Sp=...2S;.1). Then there is a

b_
w = bg 954 ... 4+ by +T1-|-

Let k;<k,=<... be an infinile sequence, so that

kVESK—-v-Fl (V=1, 2’ "')'
Since
Zy = bK'gK-I‘ ver +bK__v+1'9K_v+1+a}(k!)v'9K—v+ rees

therefore lim z, = w.

V->oco

Taking into account that klim z,=z, we have w=z. Hence it follows that (3.9) is a
suitable representation of z.

We have proved Theorem 2.
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