Canonical number systems for complex integers

By I. KÁTAI and J. SZABÓ in Budapest

1. It is a well-known fact that every non-negative integer N has a unique representation of the form

$$(1.1) N = a_0 + a_1 A + ... + a_k A^k,$$

where the integers a_j are selected from the set $\{0, 1, ..., A-1\}$, and A is an integer, $A \ge 2$. Furthermore, choosing a negative integer -A $(A \ge 2)$, we can represent every integer N as a sum:

(1.2)
$$N = a_0 + a_1(-A) + \dots + a_k(-A)^k$$
, $0 \le a_j \le A - 1$ $(j = 0, 1, \dots, k - 1)$, where a_j are integers. The representation (1.2) is also unique.

The number systems of negative base have some applications in the theory of computations.

The following question seems to be interesting: Given a Gaussian integer ϑ , can we represent every Gaussian integer α in the form

$$(1.3) \alpha = r_0 + r_1 \vartheta + \ldots + r_k \vartheta^k$$

or not? Here $r_j \in \mathfrak{A}$, \mathfrak{A} being a fixed complete residue system mod \mathfrak{A} .

If the answer is affirmative, we say that $(9, \mathfrak{A})$ is a number system.

We shall investigate only the case $\mathfrak{A} = \mathfrak{A}_0$ where

(1.4)
$$\mathfrak{A}_{0} = \{0, 1, ..., N(\vartheta) - 1\},\$$

and N(9) denotes the "norm"

$$N(\vartheta) = \vartheta \cdot \bar{\vartheta} = (\operatorname{Re} \vartheta)^2 + (\operatorname{Im} \vartheta)^2.$$

It is known that for $\vartheta = -1 + i$, $(\vartheta, \mathfrak{A}_0)$ is a number system; see [1] We prove:

Theorem 1. (9, \mathfrak{A}_0) is a number system if and only if

a) Re 9 < 0 and b) Im $9 = \pm 1$.

For $\vartheta = -A \pm i$ the representation of α in the form (1.3) is unique.

Theorem 2. Let $\vartheta = -A \pm i$, z an arbitrary complex number. Then

$$z = a_l \vartheta^l + \dots + a_0 + \frac{a_{-1}}{\vartheta} + \frac{a_{-2}}{\vartheta^2} + \dots,$$

where $a_i \in \mathfrak{A}_0$ (j=l, l-1, ..., 0, -1, -2, ...).

We do not assert the uniqueness of the representation of z in the form (1.5).

2. Proof of Theorem 1. Necessity. Let $\vartheta = A + Bi$. Then

$$\mathfrak{A}_0 = \{0, 1, \dots, A^2 + B^2 - 1\}.$$

It is obvious that \mathfrak{A}_0 must be a complete residue system mod ϑ if $(\vartheta, \mathfrak{A}_0)$ is a number system. In the opposite case there is an α which is incongruent to k for every k in \mathfrak{A}_0 , but from (1.3) $\alpha \equiv r_0 \pmod{\vartheta}$, $r_0 \in \mathfrak{A}_0$ follows, and this is a contradiction.

Suppose that A>0. We prove that $\alpha=(1-A)+iB=1-\bar{9}$ has no representation of type (1.3). Suppose in the contrary that

(2.1)
$$\alpha = r_0 + r_1 \vartheta + \dots + r_k \vartheta^k.$$

Let

$$\varrho = \alpha(1-\vartheta) = (1-A)^2 + B^2 = A^2 + B^2 - 2A + 1.$$

Since $A \ge 1$, we have $\varrho \in \mathfrak{A}_0$. From (2.1) we get

$$\varrho = r_0 + (r_1 - r_0)\vartheta + \dots + (r_k - r_{k-1})\vartheta^k - r_k\vartheta^{k+1}.$$

Hence $\varrho \equiv r_0 \mod \vartheta$, and by $\varrho \in \mathfrak{A}_0$, $r_0 \in \mathfrak{A}_0$ we get: $\varrho = r_0$. So

$$(r_1-r_0)\vartheta+\ldots+(r_k-r_{k-1})\vartheta^k-r_k\vartheta^{k+1}=0.$$

Hence it follows immediately that

$$r_1-r_0=0,\ldots,r_k-r_{k-1}=0,\quad r_k=0,$$

whence $r_k = r_{k-1} = \dots = r_1 = r_0 = 0$. Therefore $\varrho = 0$, and so A = 1, B = 0. But it is obvious that $\vartheta = 1$ is not a base of a number system. Similarly, $\vartheta = \pm i \, (A = 0, B = \pm 1)$ is not a base of a number system, either.

Let now Im $\vartheta = B \neq \pm 1$. Let us take into account that B is a divisor of Im ϑ^{ν} $(\nu = 1, 2, ...)$. Hence, for an α of (1.3) we get:

$$\operatorname{Im} \alpha = r_1 \operatorname{Im} \vartheta + \ldots + r_k \operatorname{Im} \vartheta^k,$$

and so $B|\text{Im }\alpha$. Consequently, (1.3) will not hold for $\alpha=i$ $(B\neq\pm 1)$.

Sufficiency. Let now $\vartheta = -A + i$ $(A \ge 1)$. Then \mathfrak{A}_0 is a complete residue system mod ϑ as it is well known. Let us take into account, that

$$(2.2) 9^2 + 2A9 + A^2 + 1 = 0.$$

Let $\alpha = E + Fi$ be an arbitrary Gaussian integer. Taking D = F, C = E + AF, we get

$$\alpha = C + D\vartheta.$$

First we prove that every α has the form

$$\alpha = U + V9 + X9^2 + Y9^3,$$

where U, V, X, Y are non-negative integers. From (2.2) we have

$$-1 = 9^2 + 2A9 + A^2$$
.

Assuming that C < 0 we can substitute C in (2.3) by

$$|C| \cdot \vartheta^2 + 2A|C| \cdot \vartheta + A^2|C|$$
.

In the case D<0 we take a similar substitution, and get (2.4). We shall use the following relation:

$$(2.5) A^2 + 1 = 9^3 + (2A - 1)9^2 + (A - 1)^2 9.$$

Let

(2.6)
$$\alpha = d_0 + d_1 \vartheta + \dots + d_k \vartheta^k \quad (k \ge 3), \quad d_i \ge 0 \quad (j = 0, \dots, k).$$

Let

(2.7)
$$t(\alpha, d) = d_0 + d_1 + \dots + d_k;$$

 $t(\alpha, d)$ is a non-negative integer, $t(\alpha, d) = 0$ only if $\alpha = 0$. We take

$$d_0 = r_0 + tN(\vartheta) = r_0 + t(A^2 + 1),$$

 $t \ge 0$, integer, $0 \le r_0 \le A^2$. From (2.5) we have

(2.8)
$$d_0 = r_0 + t(A^2 + 1) = r_0 + t(A - 1)^2 \vartheta + t(2A - 1) \vartheta^2 + t \vartheta^3.$$

We take the right hand side of (2.8) into (2.6). Then

$$\alpha = r_0 + (d_1 + t(A - 1)^2)\vartheta + (d_2 + t(2A - 1))\vartheta^2 + (d_3 + t)\vartheta^3 + d_4\vartheta^4 + \dots + d_k\vartheta^k = (2.9)$$

$$= d_0^* + d_1^*\vartheta + \dots + d_k^*\vartheta^k.$$

Since

$$-t(A+1)^2+t(A-1)^2+t(2A-1)+t=0,$$

therefore

$$t(\alpha, d^*) = d_0^* + \dots + d_k^* = t(\alpha, d), \quad d_i^* \ge 0 \qquad (j = 0, \dots, k).$$

Let

(2.10)
$$\alpha_1 = d_1^* + d_2^* \vartheta + \dots + d_k^* \vartheta^{k-1}.$$

6 A

We have

(2.11)
$$\alpha = \alpha_1 \vartheta + r_0 \quad (r_0 \in \mathfrak{V}_0),$$

$$t(\alpha_1, d^*) = d_1^* + d_2^* + \dots + d_k^*.$$

It is obvious that $t(\alpha_1, d^*) < t(\alpha, d)$, when $r_0 \neq 0$. For $r_0 = 0$, $t(\alpha_1, d^*) = t(\alpha, d)$. Now we write $t(\alpha, d) = t(\alpha)$, $t(\alpha_1, d^*) = t(\alpha_1)$, We repeat the algorithm (2.9), (2.11):

$$\alpha = \alpha_1 \vartheta + r_0, \quad \alpha_1 = \alpha_2 \vartheta + r_1, \quad \dots, \quad \alpha_{j-1} = \alpha_j \vartheta + r_{j-1} \quad (r_i \in \mathfrak{V}_0).$$

Then $t(\alpha) \ge t(\alpha_1) \ge \dots$ and $t(\alpha_i) > t(\alpha_{i+1})$ when $r_i \ne 0$. This process is terminated at the jth step if $\alpha_i = 0$. In this case we get

$$\alpha = r_0 + r_1 \vartheta + \ldots + r_{i-1} \vartheta^{j-1} \quad (r_i \in \mathfrak{N}_0).$$

Suppose that the process is not terminated. Then for a suitably large i

$$t(\alpha_i) = t(\alpha_{i+1}) = \dots \neq 0.$$

Hence

$$\alpha_i = \alpha_{i+1} \vartheta, \dots \alpha_{i+k-1} = \alpha_{i+k} \vartheta$$

and, therefore, $\vartheta^k | \alpha_i$ (k=1, 2, ...). This holds only if $\alpha_i = 0$.

We proved the existence of the representation of α in the form (1.3).

Let us suppose now that there is an α wich has two different representations:

$$\alpha = r_0 + r_1 \vartheta + \ldots + r_k \vartheta^k = s_0 + s_1 \vartheta + \ldots + s_k \vartheta^k, \quad r_i, s_i \in \mathfrak{A}_0.$$

Then $0=(r_0-s_0)+(r_1-s_1)\vartheta+...+(r_k-s_k)\vartheta^k$ and therefore $r_0\equiv s_0 \bmod \vartheta$; as r_0 , $s_0\in \mathfrak{A}_0$ we get $r_0=s_0$. Dividing by ϑ , we get

$$0 = (r_1 - s_1) + \dots + (r_k - s_k) \vartheta^{k-1}.$$

We repeat the argument. Finally we get:

$$r_0 = s_0, r_1 = s_1, \ldots, r_k = s_k.$$

We have proved the theorem for $\vartheta = -A + i$.

Let now $\vartheta = -A - i$. Using the theorem for $\overline{\vartheta} = -A + i$, we get

$$\bar{\alpha} = r_0 + r_1 \bar{\vartheta} + \dots + r_k \bar{\vartheta}^k \quad (r_i \in \mathfrak{A}_0)$$

for every Gaussian integer $\bar{\alpha}$. Hence

$$\alpha = r_0 + r_1 \vartheta + \ldots + r_k \vartheta^k,$$

and so the theorem holds for $\theta = -A - i$, too.

3. Proof of Theorem 2. Let z be an arbitrary complex number, z=x+iy. Let

$$\vartheta^k = U_k + iV_k.$$

We have

(3.2)
$$z = \frac{z9^k}{9^k} = \frac{(x+iy)(U_k+iV_k)}{9^k} = \frac{C_k+D_ki}{9^k} + \frac{u_k+v_ki}{9^k},$$

where C_k , D_k are rational integers, $|u_k| < 1$, $|v_k| < 1$. Let

(3.3)
$$z_k = \frac{C_k + iD_k}{\mathfrak{I}^k}, \quad \delta_k = \frac{u_k + iv_k}{\mathfrak{I}^k}.$$

It is obvious that $\delta_k \to 0$ $(k \to \infty)$, and so $z_k \to z$. Since $C_k + iD_k$ is a Gaussian integer, by Theorem 1 we have

(3.4)
$$C_k + iD_k = a_t^* \vartheta^t + \dots + a_0^*, \quad t = t(k)$$

First we prove that the sequence t(k)-k (k=1, 2, ...) has an upper bound. Indeed, from (3.4)

$$z_k = a_t^* \vartheta^{t-k} + \ldots + a_0^* \vartheta^{-k}$$

Hence

(3.5)
$$a_t^* \vartheta^{t-k} + \dots + a_k^* = z_k - \frac{a_{k-1}^*}{\vartheta} - \dots - \frac{a_0^*}{\vartheta^k},$$

and so

$$|a_{t}^{*} \vartheta^{t-k} + \dots + a_{k}^{*}| \leq |z_{k}| + \frac{a_{k-1}^{*}}{|\vartheta|} + \dots + \frac{a_{0}^{*}}{|\vartheta|^{k}} \leq |z_{k}| + |\delta_{k}| + A^{2} \left(\frac{1}{|\vartheta|} + \frac{1}{|\vartheta|^{2}} + \dots\right) \leq |z| + |\delta_{k}| + \frac{A^{2}}{|\vartheta| - 1}.$$

Hence it follows that

$$|a_t^* \vartheta^{t-k} + \ldots + a_k^*| \le c,$$

c = c(z) being a suitable positive constant.

Since the representation of Gaussian integers in the form (1.3) is unique, and the circle $|w| \le c$ contains only a finite set of Gaussian integers, therefore t(k)-k has an upper bound. Let K be an integer, $t-k \le K$. Then we can write z_k as

(3.8)
$$z_k = a_K^{(k)} \vartheta^K + \dots + a_0^{(k)} + \frac{a_{-1}^{(k)}}{\vartheta} + \frac{a_{-2}^{(k)}}{\vartheta^2} + \dots,$$

where $a_j^{(k)} \in \mathfrak{A}_0$ (j=K, K-1, ..., 0, -1, ...). Let $b_K \in \mathfrak{A}_0$ be an integer so that $a_K^{(k)} = b_K$ for infinitely many k. Let S_K be the subset of those integers k satisfying $a_K^{(k)} = a_K^{(k)}$

 $=b_k$. Suppose that S_K, \ldots, S_{l+1} is constructed $(S_k \supseteq \ldots \supseteq S_{l+1})$. Then there is a $b_l \in \mathfrak{A}_0$, such that for infinitely many k in S_{l+1} $a_l^{(k)} = b_l$. Let S_l be the set of these k's. S_l has infinitely many elements. We repeat this argument for $K, K-1, \ldots 0, -1, \ldots$ Let

$$w = b_K \vartheta^K + \ldots + b_0 + \frac{b_{-1}}{\vartheta} + \ldots$$

Let $k_1 < k_2 < ...$ be an infinite sequence, so that

$$k_{\nu} \in S_{K-\nu+1}$$
 ($\nu = 1, 2, ...$).

Since

$$z_k = b_K \vartheta^K + \dots + b_{K-\nu+1} \vartheta^{K-\nu+1} + a_{K-\nu}^{(k_\nu)} \vartheta^{K-\nu} + \dots,$$

therefore

$$\lim_{v\to\infty}z_{k_v}=w.$$

Taking into account that $\lim_{k\to\infty} z_k = z$, we have w=z. Hence it follows that (3.9) is a suitable representation of z.

We have proved Theorem 2.

Reference

[1] D. E. KNUTH, *The art of computer programming*. Vol. 2, Addison—Wesley Publishing Company (London, 1971).

(Received December 28, 1974)