
Tiling problems in music composition:
Theory and Implementation.

Moreno Andreatta, Carlos Agon, Emmanuel Amiot.

IRCAM, Centre Georges Pompidou, France
email: {andreatta, agon}@ircam.fr - chucky@wanadoo.fr

Abstract

This paper aims at presenting an application of

algebraic methods in computer assisted composition.

We show how a musical problem of construction of
rhythmic canons can be formalized algebraically in

two equivalent ways: factorization of cyclic groups

and products of polynomials. These methods lead to

the classification of some musical canons having the

property of tiling the time axis (tiling rhythmic

canons). They generalize a compositional model
originally proposed by the French composer Olivier

Messiaen. The implementation of a large family of

tiling rhythmic canons in the visual programming

language OpenMusic offers to the composer a wide

spectrum of new compositional applications.

1 Introduction
Although algebraic methods have been consciously

applied to music composition since the '60, their wide

possibilities in the field of computer assisted

composition have been taken in consideration only
recently. Nevertheless, the abstract power of all these

concepts enables the composer to work in a very

general conceptual space, with some natural

applications in the pitch- as well in the rhythmic

domain. In this paper we show how a partition

problem, in the pitch domain, can be viewed
rhythmically in terms of musical canons tiling the

time axis. This model generalizes a compositional

idea of the French composer Olivier Messiaen who

proposed to consider canons just as a polyphony of

rhythmic voices (independently from the melodic
contour or of the harmonic content). All voices have

the same rhythmic pattern, but they are translated in

the time axis. We present a formalized model of such

rhythmic canons, especially for those having the

property of tiling the time axis (tiling rhythmic

canons). In particular, we discuss some musically-

relevant mathematical properties that enable to

concentrate the study in a very special family of tiling
rhythmic canons, called Regular Complementary

Canons of Maximal Category (Vuza, 1991-).

Since Vuza’s original papers, tiling rhythmic canons

have become a very interesting object of study for

musicologists and composers. The implementation of
this model in the visual programming language

OpenMusic (Assayag et al., 1999) increases the

possibilities of fruitful interactions between

musicologists, computer-scientists and composers, as

one may infer from a recent workshop on this topic

organized at IRCAM (Amiot, 2002; Johnson, 2002).
This paper aims at presenting the main results of an

algebraic-oriented approach on tiling problems in

music. In order to present this model, we need some

preliminary definitions that are provided in Section 2.

Section 3 introduces and discusses the concept of
tiling rhythmic canons. In Sections 4 and 5 we

present two main algebraic approaches in the

formalization of tiling rhythmic canons: the group-

factorization and the polynomial approach. In Section

6 we show how to generalize the previous two

models of tiling rhythmic canons by considering
canons where voices are not only simple translations

of a given rhythmic pattern. This remark opens the

problem of classifying more general types of tiling

canons, the so-called augmented canons. Some of

these questions are discussed in the final section.

2 Some preliminary definitions
One of the first attempts to formalize rigorously the

construction process of rhythmic canons has been

made by the Rumanian mathematician Dan Tudor
Vuza (Vuza, 1985 and Vuza, 1991-). We present

shortly some elements of his model that have been

used in the OpenMusic implementation of tiling

rhythmic canons.
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2.1 Definition of a periodic rhythm

A periodic rhythm is a periodic locally finite subset

R of the set Q of rational numbers, i.e.:

1. It exists a positive rational number t such that

t+R=R (periodicity)

2. For a, b in Q with a<b, the set R∩[a,b[ is finite,

where [a,b[={x ∈ Q:  a≤x<b}. This is the so-
called locally finiteness.

The least positive rational number satisfying

condition 1. is called the period of R whereas the

greatest positive rational number dividing all
differences r1-r2 with ri belonging to R is called

minimal division of R.      

Example 1.
Consider the following rhythm:

In Vuza's model, this rhythm can be considered a

periodic rhythm corresponding to the following

infinite subset R of rational numbers:

R = {0, 3/16, 1/2, 1, 21/16}+(3/2)Z

where aZ= {ax : x ∈ Z}. Its period is equal to 3/2 and
its minimal division is equal to 1/16. We will see in
Section 3 how Messiaen has used this pattern for the

construction of a rhythmic canon having some

remarkable geometric properties.

2.2 Definition of a group.

By definition a group is a set G of elements

together with a binary operation "•" such that the four
following properties are satisfied:

1. Closure: a•b belongs to G for all a and b in G.

2. Associativity: (a•b)•c = a•(b•c) for all a, b, c
belonging to G.

3. Identity: There exists a unique element e in G

such that a•e = e•a = a for all a in G.

4. Inverses: For each element a in G there exists a

unique element a' in G such that a•a' = a'•a = a

2.3 Cyclic groups

A cyclic group of n elements (i.e. of order n) is a

group (G,•) in which there exists an element g
(usually more than one) such that each element of G

is equal to g•g•… •g, where the group law "•" is
applied a finite number of times. In other words, G is

generated by g. In general a cyclic group of order n is

generated by all integers d which are relatively

primes with n (i.e. 1 is the only common divisor of n
and d). Usually a cyclic group of order n is

represented the set {0,1,…,n-1} of integers (modulo

n) and it will be indicated as Z/nZ. Geometrically, a

cyclic group can be represented by a circle. Integers

0, …, 11 are distributed uniformly, as in a clock. One
may go from an integer to another simply by rotating

the circle around his center by an angle equal to a

multiple of 30°. Musically speaking, rotations are

equivalent to transpositions and reflection through a

diameter correspond to inversions. Transpositions

(i.e. rotations) define equivalent relations between
chords (i.e. between subsets of cyclic groups). Two

chords are equivalent if the latter is the transposition

of the former (or conversely). Chords which are

equivalent up to transpositions and inversions are the

well-known pitch-class sets (Forte, 1973).
In analogy with the case of transposition classes

of chords, we can consider rhythmic classes as

transposition classes of rhythms, where the

transposition factor is a rational number, instead of an

element of Z/nZ. Moreover, a periodic rhythm can be

associated with a subset of the cyclic group Z/nZ
where n is depending on the numerical invariants of a

rhythm that we already introduced i.e. the period and

the minimal division. Figure 1 shows two circular

representations of the rhythmic pattern discussed in

the example 1.

Figure 1: Circular representations

The natural way to build a correspondence between a

rhythmic pattern and a subset of a cyclic group is

obtained by taking the least n such that the rhythm is

a non-periodic subset of Z/nZ. We will also say that
the rhythm R is naturally associated with a subset of a

cyclic group with order n equal to p/m where p is the

period of R and m is its minimal division (which is

equal to 24 in the case of the rhythm of Figure 1).



The fact that we associate a rhythm with a non-

periodic subset of a cyclic group enables to restrict
the study of rhythmic tiling canons to a special family

of them. This condition reduce the great number of

possible tiling canons of a given period, as it has been

shown recently by H. Fripertinger (Fripertinger,

2001).

3 Tiling rhythmic canons.
Before discussing the formal model of a tiling

rhythmic canon, we present an example that goes in

the direction of this model, although without

achieving it. This example is quoted from Messiaen's

piece Harawi (part no. 7, Adieu).

Figure 2: A Messiaen’s three-voices canon in the
piece Harawi

From a rhythmic point of view, the previous example

realizes a canon in three voices, each voice being the

concatenation of three non-retrogradable rhythms, as
it is shown in figure 3:

Figure 3: Rhythmic pattern of Harawi

In Messiaen's words, this musical structure realizes a

kind of "organized chaos" (Messiaen, 1992; p. 46),

for the voices have no onset-point in common. This is
only partially true, as it is clear from the following

representation of the canon in a grid in which points

correspond to the onset-times of the voices. There are

instants of time in which no voice is playing and,

conversely, there are moments in which two or more
voices are playing together (Figure 4).

Figure 4: “Grid representation” of Harawi.

To be noticed that the same grid has also been used
by Messiaen in Visions de l'Amen: Amen des anges,

des saints , du chant des oiseaux. The only difference

concerns the minimal division of the rhythm, which is

now equal to a 32th note. Figure 5 shows the formal

rhythmic structure of this new canon.

Figure 5: A three-voices canon in  Visions de l'Amen.

3.1 Definition of a tiling rhythmic canon

By definition, a rhythmic tiling canon is a

rhythmic canon such that at any time there is one (and

only one) voice playing. An example of rhythmic
tiling canon is given in Figure 6.

Figure 6: Example of a tiling rhythmic canon.

It is a canon in 4 voices obtained by the time

translation of the pattern R=(2 8 2) in the onset-times

0, 5, 6, 11. The first rhythmic pattern is called inner



rhythm, whereas the pattern of coming in of voices is

called outer rhythm (Andreatta et al., 1999). Inner
and outer rhythms replace Vuza's original ground and

metric classes (Vuza, 1991), a terminology that could

give rise to some confusions for what extends the

characterization of rhythmic and metric properties of

such global musical structures. This tiling condition

implies that time axis is provided with a minimal
division which holds as well for the inner and for the

outer rhythm. Rhythmic canons verifying the tiling

condition are also called, in Vuza's terminology,

Regular Complementary canons. In fact, voices are

all complementary (there is no intersection between
them) and once the last voice has come in, one hears

only a regular pulsation (there are no holes in the

time axis).

4. Canons as group factorizations
Algebraically, the problem of construction of a

regular complementary canon is equivalent to the
factorization of a cyclic group Z/nZ in a direct sum of

two subsets. Figure 7 shows the factorization of the

cyclic group Z/12Z that gives rise to the tiling canon

shown in Figure 6.

Figure 7: Factorization of Z/12Z in two subsets.

In the previous example the two subsets are

respectively A={0,8,10} and B={0,5,6,11}.

Factorizing a cyclic group in a direct sum of subsets

A and B means that every element of Z/12Z can be
expressed in a unique way as a sum of an element of

A and an element of B. Musically, this means that at

every instant of time there is one (and only one) voice

playing.

By looking more carefully at the structure of the

inner and outer rhythms of the previous canon, we
may easily see that they have no equal period. In fact

S is a periodic pattern with period equal to 6, whereas

R has period equal to 12. By adding the condition that

both R and S should have the same period, we obtain

the so-called Regular Complementary Canons of

Maximal Category (shortly Vuza-canons). Vuza
proved that canons of this type only exist for periods

n which can be decomposed in a product of 5

numbers p, q, x, y, z where:

• p, q are distinct primes

• The product px is relatively prime with the

product qy

• x, y and z are greater or equals to 2.

Such periods n can also be characterized by the fact

that they satisfy the following 5 negative conditions:

1. They are no powers of a prime number

2. They are no products of a power of a prime

number by a power of a different prime number

3. They are no products of squares of two distinct

primes

4. They are no products of two distinct primes by a
third different prime (or by its square).

5. They are no products of four different primes.

Figure 8 shows some numbers n satisfying the

previous conditions.

Figure 8: periods for Vuza-Canons.

For any given n of this type, there exists a Vuza-

Canon with inner and outer rhythms of period n.

Moreover, the decomposition of n as a product of the

five numbers p, q, x, y, z with the previous conditions

gives some information about the formal structure of
the canon. For example, the number of voices of the

canon will be always the product of x and y. The first



n satisfying the previous conditions is 72=2⋅3⋅2⋅3⋅2;
as a consequence 6 is the least number of voices for a

regular complementary canon of maximal category.

The implementation of Vuza's algorithm in

OpenMusic enables to calculate the complete list of
canons for a given n. Figure 9 shows the inner and

outer rhythms with period 72.

Figure 9: All solutions for n=72.

Vuza-canons have some major properties:

1. Every inner rhythm can be combined with all

outer rhythm.

2. For a given solution R=(a1, a 2, …am) every

circular permutation is also a solution. This

corresponds to a shift in the time axis.

3. Inversions R'=(am, am-1, …a1) of a given solution

are solutions too. This corresponds to listen to

the canon from the end to the beginning.

In conclusion, there are 9 classes of equivalence of

Vuza-canons with period 72.

Figure 10 shows an example of Vuza-Canon of

period 72, with R=(1 4 1 6 13 4 7 6 6 1 4 19) and

S=(8 10 8 14 18 14 ).

Figure 10: A Vuza-canon with period 72.

5. Rhythmic canons as product of
polynomials

This model of rhythmic canons has been
developed by one of the authors (Amiot, 2002) after a

concept originally introduced by A. Tangian

(Tangian, 2001). It makes use of the notion of 0-1

polynomials i.e. polynomials with coefficients 1 or 0.

For example P(x)=1+x+x4 and Q(x)=1+x2 are two 0-1

polynomials of degree 4 and 2 respectively.

Rhythmic canons can be defined in terms of

polynomials by means of the common notion of

product of polynomials. A rhythmic canon is a 0-1
polynomial which is the product of two 0-1

polynomials. For example, the product of

P(x)=1+x+x4  and  Q(x)=1+x2  defines the following

0-1 polynomial: T(x)=1+x+x2+x3+x4+x6. Musically,

the polynomial T(x) gives rise to the rhythmic canon

in Figure 11:

Figure 11: A rhythmic canon generated by the

product of two 0-1 polynomials.

Note that the previous canon is not a tiling canon.

The tiling condition is well-expressed in terms of
product of 0-1 polynomials: a tiling rhythmic canon

is a polynomial T which is product of two 0-1

polynomials and which has  all coefficients equal

to 1.

Example 2.
Consider the two 0-1 polynomials P(x)=1+x+x4+x5

and Q(x)=1+x2+x8+x10+x16+x18 of degree 5 and 18

respectively: Their product is the polynomial

T(x)=1+x+x2+…+x23 corresponding to the following
tiling canon (Figure 12):



Figure 12: A tiling rhythmic canon generated by the

product of two 0-1 polynomials

This example belongs to the family of regular

complementary canons that do not have maximal

category, as discussed in Section 3.1. The periodicity

in the outer rhythm is due to the fact that the

polynomial Q(x) is, in reality, a periodic-polynomial,
i.e. it is a polynomial in the variable x2 instead of

being a polynomial in the variable x.      

Until now we simply considered tiling rhythmic
canons obtained by some translations of a given inner

rhythm in the time axis. In other words, we worked in

a paradigm that is entirely embedded in the structure

of the cyclic group Z/nZ. The next session provides

some elements leading to a new family of tiling
rhythmic canons: the augmented canons.

6. Toward a generalized model of
tiling rhythmic canons

Consider the following hexachord in the 12
tempered division of the octave:

Figure 13: A ‘special’ hexachord.

In the terminology introduced by the American

music-theorist Milton Babbitt (1955), such a chord is

called an  inversional combinatorial structure. This

means that its complement cannot be obtained by
simple transposition. An inversion is necessary, as it

is clear from Figure 14.

Figure 14: An inversional combinatorial hexachord.

The rhythmic interpretation of the previous

hexachord leads to the construction of rhythmic

canons in which different voices could be translation

or inversions of a given rhythmic pattern (Figure 15).

Figure 15. The ‘canonical’ realisation of an

inversional combinatorial hexachord.

The property of tiling completely the time axis,
without intersection nor holes between the voices

enables to speak of regular complementary canons by

inversion. More generally, voices may be obtained

through a stretching process applied to a given

rhythmic pattern. Musically, it corresponds to the



well-known canonical techniques of augmentations

and diminutions. Mathematically, these operations are
described by affine transformations. By definition an

affine transformation from Z/nZ into itself is a

function f which transforms a pitch-integer x into

ax+b (modulo n) where a is an integer relatively

prime with n and b belongs to Z/nZ. In the special

case of n=12, the multiplying factor a belongs to the
set U={1,5,7,11}. Note that an affine transformation

reduce to a simple transposition by taking a=1. On

the other side, inversions are affine transformations

with a=11. Canons obtained by affine

transformations applied to a given rhythmic pattern
are called augmented canons (Andreatta et al. 2001)1.

With the OpenMusic function ag-canoninfo we can

ask for a given period and a given cardinality of a

rhythmic pattern (i.e. the number of attacks) all

possible affine transformations that can be applied on

a particular inner rhythm in order to have tiling
canons. Figure 13 shows the answer for canons with

period 12 and inner rhythms with cardinality 6.

Figure 16: Rhythmic patterns and stretching factors
for augmented canons.

For example, the solution ((0 1 2 4 5 7) ((1 5)))

means that the rhythmic pattern R=(0 1 2 4 5 7) may

be stretched by factors 1 (i.e. the identity) and factor

5. To obtain the translation part b of the affine
transformation ax+b we need the function

all—canonsaff which takes as parameters the inner

rhythm R and the stretching factors (Figure 17):

                                                
1 The implementation of the family of augmented canons in

OpenMusic represents an open field of research in

collaborations with the group MaMuTh of the University of
Berlin coordinated by Thomas Noll.

Figure 17: Affine transformations associated with the

rhythmic pattern R=(0 1 2 4 5 7)

We get as answers the values (1 0), corresponding to

the identity affine transformation and (5 10),

corresponding to the affine transformation
f(x)=5x+10. The function augmented-canon uses the

previous information to construct the augmented

canon. The tiling condition is realized by repeating

the augmented voice a number of times equal to the

stretching factor. In this case we obtain an augmented

canon in 6 voices, with one original inner rhythm and
5 augmented voices (Figure 18).

Figure 18: An augmented tiling canon in 6 voices.

7. Conclusion

Tiling problems in music composition have

sometimes very interesting mathematical properties.
We offered two different approaches in the study of

the musical form of tiling rhythmic canons. The first

one uses some group-theoretical methods in order to

express tiling rhythmic canons as factorizations of

cyclic groups. In an equivalent way, tiling rhythmic



canons may be defined in terms of product of special

polynomials. In both cases, the implementation of
some theoretical concepts, as we have done in

OpenMusic, offers to the composer a wide family of

new interesting musical structures. From a

mathematical point of view, rhythmic canons like

those discussed in this paper are but special cases of a

more general family of tiling canons in which voices
are obtained via affine transformations: the

augmented canons. The problem of a complete

classification of these musical structures represents an

open field of research in the domain of formalization

and implementation of new interesting musical
structures.
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