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Abstract

In mathematical music theory we often come across various constructions
on Zn, the set of residues modulo n for n ≥ 2. Different objects constructed
on Zn are considered to be equivalent if there exists a symmetry motivated by
music which transforms one object into the other one. Usually we are dealing
with cyclic, dihedral, or affine symmetry groups on Zn. Here we will compare
partitions of Zn, sometimes also called mosaics, and rhythmic tiling canons on
Zn. Especially we will investigate regular complementary canons of maximal
category in more details.

1 Introduction
In the present paper we compare two tiling problems of

Zn = {0, 1, . . . , n− 1} ,

the set of all residues modulo n for n ≥ 2. We discuss how to partition the
set Zn in essentially different ways, and we describe a special class of canons
which also partition Zn. When speaking about partitioning of a set X , here
X = Zn, we assume that there exist an integer k ≥ 1 and nonempty subsets
P1, . . . , Pk of X such that X = P1 ∪ . . . ∪ Pk, and the intersection Pi ∩ Pj is
the empty set for all i 6= j. Two partitions are called ’essentially different’ if
there is no symmetry operation of Zn which transforms one partition into the
other one. Of course this notion heavily depends on what is assumed to be
a symmetry of Zn. If the temporal shift T , retrograde inversion R and affine
mappings Aa,b are determined by

T :Zn → Zn i 7→ T (i) := i+ 1

R:Zn → Zn i 7→ R(i) := −i
Aa,b:Zn → Zn i 7→ Aa,b(i) := ai+ b a, b ∈ Zn,

then usually the cyclic group Cn := 〈T 〉, the dihedral group Dn := 〈T,R〉, or
the group Aff1(Zn) := {Aa,b | a, b ∈ Zn, gcd(a, n) = 1} of all affine mappings
on Zn are symmetry groups on Zn which can be motivated by music theory.
(Cf. Mazzola (1990, 2002).)

Such constructions on Zn we are interested in can be best described in the
notion of discrete structures. The mathematical tool for working with symme-
try operations are group actions, which will be introduced later.

In general discrete structures are objects constructed as
– subsets, unions, products of finite sets,
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– mappings between finite sets,
– bijections, linear orders on finite sets,
– equivalence classes on finite sets,
– vector spaces over finite fields, etc.

For example it is possible to describe graphs, necklaces, designs, codes,
matroids, switching functions, molecules in chemistry, spin-configurations in
physics, or objects of local music theory as discrete structures.

As was indicated above, often the elements of a discrete structure are not
simple objects, but they are themselves classes of objects which are considered
to be equivalent. Then each class collects all those elements which are not
essentially different. For instance, in order to describe mathematical objects
we often need labels, but for the classification of these objects the labelling is
not important. Thus all elements which can be derived by relabelling of one
labelled object are collected to one class.

For example, a labelled graph is usually described by its set of vertices V
and its set of edges E. (An edge connects exactly two different vertices of the
graph.) If the graph has n vertices, then usually V = n := {1, . . . , n} and E
is a subset of the set of all 2-subsets of V . Then {i, j} belongs to E if the two
vertices with labels i and j are connected by an edge of the graph. An unla-
belled graph is the set of all graphs which can be constructed by relabelling a
labelled graph.

Besides relabelling also naturally motivated symmetry operations give rise
to collect different objects to one class of essentially not different objects. This
is for instance the case when we describe different partitions of Zn or different
canons on Zn.

The process of classification of discrete structures provides more detailed
information about the objects in a discrete structure. We distinguish different
steps in this process:

step 1: Determine the number of different objects in a discrete structure.

step 2: Determine the number of objects with certain properties in a discrete
structure.

step 3: Determine a complete list of all the elements of a discrete structure.

step 4: Generate the objects of a discrete structure uniformly at random.

In general, step 3 is the most ambitious task, it needs a lot of computing
power, computing time and memory. For that reason, when the set of all el-
ements of a discrete structure is too hard to be completely determined it is
useful and makes sense to consider step 4. This approach allows to generate
a huge variety of different unprejudiced objects of a discrete structure. These
sets of examples can be very useful for checking certain hypotheses on them
and afterwards for trying to prove the valid ones.

For example, let us have a short look at the classification of unlabelled
graphs on 4 vertices:

step 1: There are 11 graphs on 4 vertices.

step 2: There exists exactly one graph with 0 edges, with 1 edge, with 5 edges
or with 6 edges; two graphs with 2 or 4 edges; three graphs with 3 edges.

step 3: The unlabelled graphs on 4 vertices are given in figure 1.
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Figure 1: The unlabelled graphs on 4 vertices

The standard tool for classification of discrete structures are group actions. A
detailed introduction to combinatorics under finite group actions can be found
in Kerber (1991, 1999).

A multiplicative group G with neutral element 1 acts on a set X if there
exists a mapping

∗:G×X → X ∗ (g, x) 7→ g ∗ x

such that
(g1g2) ∗ x = g1 ∗ (g2 ∗ x) g1, g2 ∈ G, x ∈ X

and
1 ∗ x = x x ∈ X.

We usually write gx instead of g∗x. A group action ofG onX will be indicated
as GX . If G and X are finite sets, then we speak of a finite group action.

A group action GX determines a group homomorphism φ from G to the
symmetric group SX := {σ | σ:X → X is bijective} by

φ:G→ SX , g 7→ φ(g) := [x 7→ gx],

which is called a permutation representation of G on X . Usually we abbreviate
φ(g) by writing ḡ, which is the permutation of X that maps x to gx. For in-
stance 1̄ is always the identity on X . Accordingly, the image φ(G) is indicated
by Ḡ. It is a permutation group on X , i. e. a subgroup of SX .

A group action GX defines the following equivalence relation on X . Two
elements x1, x2 of X are called equivalent, we indicate it by x1 ∼ x2, if there
is some g ∈ G such that x2 = gx1. The equivalence class G(x) of x ∈ X with
respect to ∼ is the G-orbit of x. Hence, the orbit of x under the action of G is

G(x) = {gx | g ∈ G} .

The set of orbits of G on X is indicated as

G\\X := {G(x) | x ∈ X} .

In general, classification of a discrete structure means the same as describing
the elements of G\\X for a suitable group action GX .

Theorem 1. The equivalence classes of any equivalence relation can be represented
as orbits under a suitable group action.
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If X is finite then Ḡ is a finite group since it is a subgroup of the symmetric
group SX which is of cardinality |X|!. For any x ∈ X we have G(x) = Ḡ(x),
whence G\\X = Ḡ\\X . Hence, whenever X is finite, each group action GX
can be described by a finite group action ḠX .

Let GX be a group action. For each x ∈ X the stabilizer Gx of x is the set of
all group elements which do not change x, thus

Gx := {g ∈ G | gx = x} .

It is a subgroup of G.

Lemma 2. If GX is a group action, then for any x ∈ X the mapping

φ:G/Gx → G(x) given by φ(gGx) = gx

is a bijection.

As a consequence we get
Theorem 3. If GX is a finite group action then the size of the orbit of x ∈ X equals

|G(x)| = |G|
|Gx|

.

Finally, as the last notion under group actions, we introduce the set of all
fixed points of g ∈ G which is denoted by

Xg := {x ∈ X | gx = x} .

Let GX be a finite group action. The main tool for determining the number
of different orbits is

Theorem 4. (Cauchy Frobenius Lemma) The number of orbits under a finite
group action GX is the average number of fixed points:

|G\\X| = 1

|G|
∑
g∈G

|Xg| .

Proof. ∑
g∈G

|Xg| =
∑
g∈G

∑
x:gx=x

1 =
∑
x∈X

∑
g:gx=x

1 =
∑
x∈X

|Gx| =

= |G|
∑
x∈X

1

|G(x)| = |G|
∑

ω∈G\\X

∑
x∈ω

1

|ω| = |G||G\\X|.

2

The most important applications of classification under group actions can
be described as symmetry types of mappings between two sets. Group actions
GX and HY on the domain X and range Y induce group actions on

Y X = {f | f :X → Y is a function}

in the following way:
G acts on Y X by

G× Y X → Y X , g ∗ f := f ◦ ḡ−1.

H acts on Y X by

H × Y X → Y X , h ∗ f := h̄ ◦ f.

The direct product H ×G acts on Y X by

(H ×G)× Y X → Y X , (h, g) ∗ f := h̄ ◦ f ◦ ḡ−1.
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2 Enumeration of non-isomorphic mosaics
In Isihara and Knapp (1993) it was stated that the enumeration of mosaics is
an open research problem communicated by Robert Morris from the Eastman
School of Music. More information about mosaics can be found in Alegant
(1992). Here some results from Fripertinger (1999) are presented.

Let π be a partition of a set X . If π consists of exactly k non-empty, disjoint
subsets of X , then π is called a partition of size k. A partition of the set Zn is
called a mosaic. Let Πn denote the set of all mosaics of Zn, and let Πn,k be the
set of all mosaics of Zn of size k.

A group action of a group G on the set Zn induces the following group
action of G on Πn:

G×Πn → Πn, g ∗ π := {gP | P ∈ π} ,

where gP := {gx | x ∈ P}. This action can be restricted to an action of G on
Πn,k. Two mosaics are called G-isomorphic if they belong to the same G-orbit
on Πn, in other words, π1, π2 ∈ Πn are isomorphic if gπ1 = π2 for some g ∈ G.

As was already indicated, in music theory the groups Cn, Dn, or Aff1(Zn)
are candidates for the group G.

It is well known (see de Bruijn (1964, 1979)) how to enumerate G-isomor-
phism classes of mosaics (i.e. G-orbits of partitions) by identifying them with
Sn × G-orbits on the set of all functions from Zn to n. (The symmetric group
of the set n is denoted by Sn.) Furthermore, G-mosaics of size k correspond to
Sk ×G-orbits on the set of all surjective functions from Zn to k.

In Fripertinger (1999) the following theorem is proved.

Theorem 5. Let Mk be the number of Sk × G-orbits on kZn . Then the number
of G-isomorphism classes of mosaics of Zn is given by Mn, and the number of G-
isomorphism classes of mosaics of size k is given by Mk −Mk−1, where M0 := 0.

Using the Cauchy-Frobenius-Lemma, we have

Mk =
1

|Sk| |G|
∑

(σ,g)∈Sk×G

n∏
i=1

a1(σ
i)ai(ḡ),

where ai(ḡ) or ai(σ) are the numbers of i-cycles in the cycle decomposition of ḡ or σ
respectively.

Finally, the number of G-isomorphism classes of mosaics of size k can also be
derived by the Cauchy-Frobenius-Lemma for surjective functions by

1

|Sk| |G|
∑

(σ,g)∈Sk×G

c(σ)∑
`=1

(−1)c(σ)−`
∑

a

k∏
i=1

(
ai(σ)

ai

)
n∏

j=1

∑
d|j

d · ad

aj(ḡ)

,

where the inner sum is taken over the sequences a = (a1, . . . , ak) of nonnegative
integers ai such that

∑k
i=1 ai = `, and where c(σ) is the number of all cycles in the

cycle decomposition of σ.

If π ∈ Πn consists of λi blocks of size i for i ∈ n, then π is said to be of block-
type λ = (λ1, . . . , λn). From the definition it is obvious that

∑n
i=1 iλi = n.

Furthermore, it is clear that π is a partition of size
∑n

i=1 λi. The set of mosaics
of block-type λ will be indicated as Πλ. Since the action of G on Πn can be
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restricted to an action of G on Πλ, we want to determine the number of G-
isomorphism classes of mosaics of type λ. For doing that, let λ̄ be a particular
partition of type λ. (For instance, λ̄ can be defined such that the blocks of λ̄
of size 1 are given by {1}, {2}, . . ., {λ1}, the blocks of λ̄ of size 2 are given by
{λ1 + 1, λ1 + 2}, {λ1 + 3, λ1 + 4}, . . ., {λ1 + 2λ2 − 1, λ1 + 2λ2}, and so on.)
According to Kerber (1991, 1999), the stabilizerHλ of λ̄ in the symmetric group
Sn is similar to the direct sum

n⊕
i=1

Sλi [Si]

of compositions of symmetric groups, which is a permutation representation
of the direct product

n
×

i=1
Si o Sλi

of wreath products of symmetric groups. In other words, Hλ is the set of all
permutations σ ∈ Sn, which map each block of the partition λ̄ again onto a
block (of the same size) of the partition.

Hence, theG-isomorphism classes of mosaics of type λ can be described as
Hλ ×G-orbits of bijections from Zn to n under the following group action:

(Hλ ×G)× nZn
bij → nZn

bij , (σ, g) ∗ f := σ ◦ f ◦ ḡ−1.

When interpreting the bijections from Zn to n as permutations of the n-
set n, then G-mosaics of type λ correspond to double cosets (cf. Kerber (1991,
1999)) of the form

Hλ\Sn/G.

Theorem 6. The number Mλ of G-isomorphism classes of mosaics of type λ is given
by

Mλ =
1

|Hλ| |G|
∑

(σ,g)∈Hλ×G

z(ḡ)=z(σ)

n∏
i=1

ai(ḡ)! i
ai(σ),

where z(ḡ) and z(σ) are the cycle types of ḡ and of σ respectively, given in the form
(ai(ḡ))i∈n or (ai(σ))i∈n. In other words, we are summing over pairs (σ, g) such that
ḡ and σ determine permutations of the same cycle type.

In conclusion, in this section we demonstrated how to classify the isomor-
phism classes of mosaics. We applied methods from step 1 or step 2 of the
general scheme of classification of discrete structures.

3 Enumeration of non-isomorphic canons
The present concept of a canon is described in Mazzola (2002) and was pre-
sented by G. Mazzola to the present author in the following way: A canon is
a subset K ⊆ Zn together with a covering of K by pairwise different subsets
Vi 6= ∅ for 1 ≤ i ≤ t, the voices, where t ≥ 1 is the number of voices of K, in
other words,

K =

t⋃
i=1

Vi,

such that for all i, j ∈ {1, . . . , t}
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1. the set Vi can be obtained from Vj by a translation of Zn,

2. there is only the identity translation which maps Vi to Vi,

3. the set of differences in K generates Zn, i.e.

〈K −K〉 := 〈k − l | k, l ∈ K〉 = Zn.

We prefer to write a canon K as a set of its subsets Vi. Two canons K =
{V1, . . . , Vt} and L = {W1, . . . ,Ws} are called isomorphic if s = t and if there
exists a translation T j of Zn and a permutation σ in the symmetric group St

such that T j(Vi) = Wσ(i) for 1 ≤ i ≤ t. Then obviously T j applied toK yields
L.

Here we present some results from Fripertinger (2002). The cyclic group
Cn acts on the set of all functions from Zn to {0, 1} by

Cn × {0, 1}Zn → {0, 1}Zn T j ∗ f := f ◦ T−j .

When writing the elements f ∈ {0, 1}Zn as vectors (f(0), . . . , f(n− 1)), using
the natural order of the elements of Zn, the set {0, 1}Zn is totally ordered by
the lexicographical order. As the canonical representative of the orbit Cn(f) ={
f ◦ T j | 0 ≤ j < n

}
we choose the function f0 ∈ Cn(f) such that f0 ≤ h for

all h ∈ Cn(f).
A function f ∈ {0, 1}Zn (or the corresponding vector (f(0), . . . , f(n− 1)))

is called acyclic if Cn(f) consists of n different objects. The canonical represen-
tative of the orbit of an acyclic function is called a Lyndon word.

As usual, we identify each subset A of Zn with its characteristic function
χA:Zn → {0, 1} given by

χA(i) =
{

1 if i ∈ A
0 otherwise.

Following the ideas of Fripertinger (2002) and the notion of Andreatta et al.
(2001), a canon can be described as a pair (L,A), where L is the inner andA the
outer rhythm of the canon. In other words, the rhythm of one voice is described
by L and the distribution of the different voices is described by A, i.e. the
onsets of all the voices of the canon determined by (L,A) are a+ L for a ∈ A.
In the present situation, L 6= 0 is a Lyndon word of length n over the alphabet
{0, 1}, and A is a t-subset of Zn. But not each pair (L,A) describes a canon.
More precisely we have:

Lemma 7. The pair (L,A) does not describe a canon in Zn if and only if there exists
a divisor d > 1 of n such that L(i) = 1 implies i ≡ d − 1 mod d and χA0(i) = 1
implies i ≡ d− 1 mod d, where χA0 is the canonical representative of Cn(χA).

An application of the principle of inclusion and exclusion allows to determine
the number of non-isomorphic canons.

Theorem 8. The number of isomorphism classes of canons in Zn is

Kn =
∑
d|n

µ(d)λ(n/d)α(n/d),

where µ is the Möbius function, λ(1) = 1,

λ(r) =
1

r

∑
s|r

µ(s)2r/s for r > 1,
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and
α(r) =

1

r

∑
s|r

ϕ(s)2r/s − 1 for r ≥ 1,

where ϕ is the Euler totient function.

Here the description of a canon as a pair (L,A) with certain properties was
used in oder to classify all canons in Zn by methods of step 1 or step 2 of the
general classification scheme.

4 Enumeration of rhythmic tiling canons
There exist more complicated definitions of canons. A canon described by the
pair (L,A) of inner and outer rhythm defines a rhythmic tiling canon in Zn with
voices Va for a ∈ A if

1. the voices Va cover entirely the cyclic group Zn,

2. the voices Va are pairwise disjoint.

Rhythmic tiling canons with the additional property

3. both L and A are acyclic,

are called regular complementary canons of maximal category.
In other words, the voices of a rhythmic tiling canon form a partition of

Zn. Hence, rhythmic tiling canons are canons which are also mosaics. More
precisely, if |A| = t then they are mosaics consisting of t blocks of size n/t,
whence they are of block-type λ where

λi =
{
t if i = n/t
0 otherwise.

This block-type will be also indicated as λ = ((n/t)t) = (|L||A|).
So far the author did not find a characterization of those mosaics of block-

type λ describing canons, which could be used in order to apply methods from
step 1 or step 2 of the general classification scheme.

Applying Theorem 6, the numbers of Cn-isomorphism classes of mosaics
presented in table 1 were computed. Among these there are also the isomor-
phism classes of canons, but many mosaics of these block types are not canons!

However, the description of the isomorphism classes of canons as pairs
(L,Cn(A)) consisting of Lyndon words L and Cn-orbits of subsets A of Zn

with some additional properties (c.f. Lemma 7) can also be applied for the
determination of complete sets of representatives of non-isomorphic canons
in Zn, as was indicated in the last part of Fripertinger (2002). These methods
belong to step 3 of the general classification. There exist fast algorithms for
computing all Lyndon words of length n over {0, 1} and all Cn-orbit represen-
tatives of subsets ofZn. For finding regular tiling canons with t voices (where t
is necessarily a divisor of n), we can restrict ourselves to Lyndon words Lwith
exactly n/t entries 1 and to representatives A0 of the Cn-orbits of t-subsets of
Zn. Then each pair (L,A0) must be tested whether it is a regular tiling canon.
In this test we only have to test whether the voices described by (L,A0) deter-
mine a partition on Zn, because in this case it is obvious that (L,A0) does not
satisfy the assumptions of Lemma 7.
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n ((n/t)t) Mλ

12 (62) 44
(43) 499
(34) 1306
(26) 902

24 (122) 56450
(83) 65735799
(64) 4008.268588
(46) 187886.308429
(38) 381736.855102
(212) 13176.573910

36 (182) 126047906
(123) 15.670055.601970
(94) 24829.574426.591236
(66) 103.016116.387908.956698
(49) 10778.751016.666506.604919
(312) 9910.160306.188702.944292
(218) 6.156752.656678.674792

40 (202) 1723.097066
(104) 4.901417.574950.588294
(85) 1595.148844.422078.211829
(58) 11.765613.697294.131102.617360
(410) 88.656304.986604.408738.684375
(220) 7995.774669.504366.055054

Table 1: Number of mosaics in Zn of block-type ((n/t)t)

For finding the number of regular tiling canons, we make use of still an-
other result concerning regular complementary canons of maximal category.
First we realize that (L,A0) is a tiling canon if and only if Zn is the direct sum
L⊕A0, i.e. Zn = L+A0 and |Zn| = |L| · |A0|. In other words, for each element
x ∈ Zn there exists exactly one pair (x1, x2) ∈ L×A0 such that x = x1 + x2.

Let G be an abelian group. A subset S of G is called g-periodic for g ∈
G if S = g + S, and it is called periodic if it is g-periodic for some g ∈ G.
Otherwise S is called aperiodic. (Subsets of Zn are aperiodic if and only if they
are acyclic.) The group G is called a Hajós group, or has the 2-Hajós property, if
in each factorization of G as S1 ⊕ S2 at least one factor is periodic. In Sands
(1962) all finite abelian groups which are Hajós groups are classified. This
classification yields the following list of cyclic Hajós groups:

Theorem 9. The group Zn is a Hajós group if and only if n is of the form

pk for k ≥ 0, pkq for k ≥ 1, p2q2, pkqr for k ∈ {1, 2} , pqrs

for distinct primes p, q, r and s.

Corollary 10. Zn is a non-Hajós group if and only if n can be expressed in the form
p1p2n1n2n3 with p1, p2 primes, ni ≥ 2 for 1 ≤ i ≤ 3, and gcd(n1p1, n2p2) = 1.
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The smallest n for which Zn is not a Hajós-group is n = 72 which is still much
further than the scope of our computations.

The pair (L,A0) is a regular complementary canon of maximal category if
and only if it is a tiling canon and both L and A0 are aperiodic. Consequently,
regular complementary canons of maximal category occur only for Zn which
are non-Hajós groups. (Cf. Vuza (1991); Andreatta (1997).) Hence, we deduce
that for all n such that Zn is a Hajós-group the following is true:

Lemma 11. If a pair (L,A0) describes a regular tiling canon in a Hajós-group Zn,
then A0 is not aperiodic.

This reduces dramatically the number of pairs which must be tested for being
a tiling canon, since for Hajós groups Zn we only have to test pairs (L,A0)
where A0 is periodic, whence A0 is not a Lyndon word.

By an application of Theorem 8 we computed Kn, the numbers of non-
isomorphic canons of length n, given in the third column of table 2.

The construction described above yields a complete list of all regular tiling
canons, whence also the number of regular tiling canons of length n, indicated
by Tn, given in the second column of table 2.

5 Some results on regular complementary can-
ons of maximal category
In Vuza (1991, 1992b,a, 1993) the author showed for which n there exist reg-
ular complementary canons of maximal category. Moreover, he described a
method how to construct regular complementary canons of maximal category
for those Zn which are non-Hajós groups. He proved that each pair (L,A)
computed along the following algorithm is a regular complementary canon of
maximal category.

Let Zn be a non-Hajós group, whence n = p1p2n1n2n3 as described in
Corollary 10. Vuza presents an algorithm for constructing two aperiodic sub-
sets L and A of Zn such that |L| = n1n2, |A| = p1p2n3, and L + A = Zn. In
order to construct L, for i = 1, 2 let Li be a nonperiodic set of representatives
of n

pini
Zn modulo its subgroup n

pi
Zn. Then set L := L1 + L2. In order to

determine A, for i = 1, 2 choose xi ∈ n
pini

Zn \ n
pi
Zn and let

A1 =
n

p1
Zn +

(
n

p2
Zn \ {0} ∪ {x1}

)
,

A2 =
n

p2
Zn +

(
n

p1
Zn \ {0} ∪ {x2}

)
.

Choose a set R of representatives of Zn modulo n3Zn, let A3 := R \n3Zn, and
put A := A1 ∪ (A2 +A3).

Consequently, both L or A can serve as the inner or outer rhythm of a
regular complementary canon of maximal category. Moreover, as we saw there
is some freedom for constructing these two sets, and each of these two sets can
be constructed independently from the other one. Vuza also proves that when
the pair (L,A) satisfies L ⊕ A = Zn, then also (kL,A), (kL, kA) have this
property for all k ∈ Z∗n.
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n Tn Kn

2 1 1
3 1 5
4 2 13
5 1 41
6 3 110
7 1 341
8 6 1035
9 4 3298

10 6 10550
11 1 34781
12 23 117455
13 1 397529
14 13 1.370798
15 25 4.780715
16 49 16788150
17 1 59451809
18 91 212.178317
19 1 761.456429
20 149 2749.100993
21 121 9973.716835
22 99 36347.760182
23 1 133022.502005
24 794 488685.427750
25 126 1.801445.810166
26 322 6.662133.496934
27 766 24.711213.822232
28 1301 91.910318.016551
29 1 342.723412.096889
30 3952 1281.025524.753966
31 1 4798.840870.353221
32 4641 18014.401038.596400
33 5409 67756.652509.423763
34 3864 255318.257892.932894
35 2713 963748.277489.391403
36 31651 3.643801.587330.857840
37 1 13.798002.875101.582409
38 13807 52.325390.403899.973926
39 40937 198.705759.014912.561995
40 64989 755.578639.350274.265100

Table 2: Number of non-isomorphic tiling canons and canons in Zn
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A regular complementary canon of maximal category which can be con-
structed by Vuza’s algorithm will be called Vuza constructible canon. The fol-
lowing table shows the numbers of isomorphism classes of Vuza constructible
canons for some values of n: (With #L, #A, and #(L,A) we denote the num-
ber of possibilities to determine essentially different aperiodic sets L and ape-
riodic sets A, and non-isomorphic canons (L,A) by using Vuza’s algorithm.)

n p1 p2 n1 n2 n3 #L #A #(L,A)
72 2 3 2 3 2 3 6 18

120 2 3 2 5 2 16 20 320
120 2 5 2 3 2 8 6 48
144 2 3 4 3 2 6 36 216
144 2 3 2 3 4 3 2808 8424
200 2 5 2 5 2 125 20 2500
240 2 3 4 5 2 32 120 3840
240 2 5 4 3 2 16 36 576

Table 3: Number of isomorphism classes of Vuza constructible canons in Zn

In order to determine the complete number of isomorphism classes of Vuza
constructible canons in Zn for given n, we have to determine all possibilities
to decompose n as in Corollary 10 and sum up the number of isomorphism
classes of Vuza constructible canons for these parameters. For instance, for
n = 72 we have 18 isomorphism classes of canons with |L| = 6, and by in-
terchanging L and A also18 isomorphism classes of canons with |L| = 12,
whence 36 isomorphism classes of Vuza constructible canons.

In order to determine the number of Vuza constructible canons of length
144 with |L| = 12, we first realize that Vuza’s algorithm yields 6 different
sets L and 36 different possibilities for A, which also consists of 12 elements.
So, when exchanging the role of L and A, we have to take care to count only
non-isomorphic canons. As a matter of fact, here in this case the process of
exchanging L and A yields new canons, so that in addition to the previous
216 canons (L,A) we have another 216 canons of the form (A,L). Hence, we
end up with 432 Vuza constructible canons of length 144 with |L| = |A| = 12.
Moreover, there exist 8424 Vuza constructible canons with |L| = 6 and 8424
Vuza constructible canons with |L| = 24, so that in conclusion there are 17280
Vuza constructible canons of length 144.

Finally, we want to deal with the question whether there exist regular com-
plementary canons of maximal category which are not Vuza constructible can-
ons. In Fripertinger (2002) for an integer d ≥ 1 we introduced the function
ψd defined on {0, 1} such that ψd(0) is the vector (0, 0, . . . , 0) consisting of d
entries of 0, and ψd(1) = (0, . . . , 0, 1) is a vector consisting of d− 1 entries of 0
and 1 in the last position. We write the values of ψd in the form

ψd(0) = 0d, ψd(1) = 0d−11.

If we apply ψd to each component of a vector f ∈ {0, 1}Zn we get a vector
ψd(f) ∈ {0, 1}Znd by concatenating all the vectors ψd(f(0)), . . . , ψd(f(n− 1)).
Among other properties we showed that
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1. f0 ∈ {0, 1}Zn is the canonical representative of Cn(f) if and only if
ψd(f0) is the canonical representative of Cnd(ψd(f)).

2. f 6= 0 is acyclic if and only if ψd(f) is acyclic.

The mapping ψd can be considered as an augmentation, mapping a rhythm
in Zn to an augmented rhythm in Znd. In correspondence with ψd, we define
the mapping Ψd which can be interpreted as k-fold subdivision. It also maps
a rhythm in Zn to a rhythm in Znd. It is defined on {0, 1} by

Ψd(0) = 0d, Ψd(1) = 1d.

Again the value Ψd(f) for f ∈ {0, 1}Zn is obtained by concatenation of the
vectors Ψd(f(0)), . . . ,Ψd(f(n − 1)). It is easy to prove that the mapping Ψd

satisfies

1. f0 ∈ {0, 1}Zn is the canonical representative of Cn(f) if and only if
Ψd(f0) is the canonical representative of Cnd(Ψd(f)).

2. Assume that n > 1. The mapping f ∈ {0, 1}Zn is acyclic if and only if
Ψd(f) is acyclic.

These two functions ψd and Ψd can be used in order to show that there ex-
ist regular complementary canons of maximal category which are not Vuza
constructible canons.

Theorem 12. Let d > 1 and assume that (L,A) is a Vuza constructible canon in
Zn. Then (Ψd(L), ψd(A)) is a regular complementary canon of maximal category in
Znd.

Among the 432 complementary canons of maximal category of length
2 · 72 = 144 with |L| = 12 we did not find a canon which was constructed
in this way for d = 2 from the 18 canons of length 72 with |L| = 6.



Perspectives in Mathematical Music Theory 14

References
ALEGANT, B. (1992). The Seventy-Seven Partitions of the Aggregate: Analytical and

Theoretical Implications. Ph.D. thesis, Eastman School of Music, University of
Rochester.

ANDREATTA, M. (1997). Group theoretical methods applied to music. Visiting
Student Dissertation, University of Sussex.

ANDREATTA, M.; NOLL, TH.; AGON, C.; and ASSAYAG, G. (2001). The Geo-
metrical Groove: rhythmic canons between Theory, Implementation and Musical
Experiment. In Les Actes des 8e Journées d’Informatique Musicale, Bourges 7-9
juin 2001, pp. 93–97.

DE BRUIJN, N.G. (1964). Pólya’s Theory of Counting. In BECKENBACH, E.F.
(ed.), Applied Combinatorial Mathematics, chap. 5, pp. 144 – 184. Wiley, New
York.

DE BRUIJN, N.G. (1979). On the number of partition patterns of a set. Nederl. Akad.
Wetensch. Proc. Ser. A 82 = Indag. Math. 41, pp. 229 – 234.

FRIPERTINGER, H. (1999). Enumeration of Mosaics. Discrete Mathematics, 199:49–
60.

FRIPERTINGER, H. (2002). Enumeration of non-isomorphic canons. Tatra Moun-
tains Mathematical Publications, 23:47–57.

ISIHARA, P. and KNAPP, M. (1993). BasicZ12-Analysis of Musical Chords. UMAP
Journal 14.4, pp. 319 – 348.

KERBER, A. (1991). Algebraic Combinatorics via Finite Group Actions. B.I. Wis-
senschaftsverlag, Mannheim, Wien, Zürich. ISBN 3-411-14521-8.

KERBER, A. (1999). Applied Finite Group Actions, vol. 19 of Algorithms and Com-
binatorics. Springer, Berlin, Heidelberg, New York. ISBN 3-540-65941-2.

MAZZOLA, G. (1990). Geometrie der Töne. Birkhäuser, Basel, Boston, Berlin.
ISBN 3-7643-2353-1.

MAZZOLA, G. (2002). The Topos of Music, Geometric Logic of Concepts, Theory,
and Performance. Birkhäuser, Basel.

SANDS, A. (1962). The factorization of Abelian Groups (II). Quart. J. Math. Oxford,
10(2):45–54.

VUZA, D.T. (1991). Supplementary Sets and Regular Complementary Unending
Canons (Part One). Perspectives of New Music, 29(2):22–49.

VUZA, D.T. (1992a). Supplementary Sets and Regular Complementary Unending
Canons (Part Three). Perspectives of New Music, 30(2):102–125.

VUZA, D.T. (1992b). Supplementary Sets and Regular Complementary Unending
Canons (Part Two). Perspectives of New Music, 30(1):184–207.

VUZA, D.T. (1993). Supplementary Sets and Regular Complementary Unending
Canons (Part Four). Perspectives of New Music, 31(1):270–305.



Perspectives in Mathematical Music Theory 15

Address: Harald Fripertinger
Institut für Mathematik
Karl-Franzens-Universität Graz
Heinrichstr. 36/4
A–8010 Graz
Austria
harald.fripertinger@uni-graz.at


