Quantum supergroups and canonical bases

Sean Clark
University of Virginia

Dissertation Defense
April 4, 2014
What is a quantum group?

A quantum group is a deformed universal enveloping algebra.
What is a quantum group?

A quantum group is a deformed universal enveloping algebra.

Let \mathfrak{g} be a semisimple Lie algebra (e.g. $\mathfrak{sl}(n), \mathfrak{so}(2n + 1)$).

$\Pi = \{\alpha_i : i \in I\}$ the simple roots.
What is a quantum group?

A quantum group is a deformed universal enveloping algebra.

Let \mathfrak{g} be a semisimple Lie algebra (e.g. $\mathfrak{sl}(n), \mathfrak{so}(2n + 1)$).

$\Pi = \{ \alpha_i : i \in I \}$ the simple roots.

$U_q(\mathfrak{g})$ is the $\mathbb{Q}(q)$ algebra with generators E_i, F_i, K^\pm_1 for $i \in I$.

Various relations; for example,

- $K_i \approx q^{h_i}$, e.g. $K_i E_j K_i^{-1} = q^{\langle h_i, \alpha_j \rangle} E_j$
- quantum Serre, e.g. $F_i^2 F_j - [2]F_i F_j F_i + F_j F_i^2 = 0$
 (here $[2] = q + q^{-1}$ is a quantum integer)
What is a quantum group?

A quantum group is a deformed universal enveloping algebra.

Let \mathfrak{g} be a semisimple Lie algebra (e.g. $\mathfrak{sl}(n), \mathfrak{so}(2n + 1)$).

$\Pi = \{\alpha_i : i \in I\}$ the simple roots.

$U_q(\mathfrak{g})$ is the $\mathbb{Q}(q)$ algebra with generators $E_i, F_i, K_i^{\pm 1}$ for $i \in I$.

Various relations; for example,

- $K_i \approx q^{h_i}$, e.g. $K_i E_j K_i^{-1} = q^{\langle h_i, \alpha_j \rangle} E_j$
- quantum Serre, e.g. $F_i^2 F_j - [2] F_i F_j F_i + F_j F_i^2 = 0$ (here $[2] = q + q^{-1}$ is a quantum integer)

Some important features are:

- an involution $\bar{q} = q^{-1}$, $\bar{K}_i = K_i^{-1}$, $\bar{E}_i = E_i$, $\bar{F}_i = F_i$;
- a bar invariant integral $\mathbb{Z}[q, q^{-1}]$-form of $U_q(\mathfrak{g})$.
Canonical basis and categorification

\[U_q(n^-) \], the subalgebra generated by \(F_i \).
Canonical basis and categorification

$U_q(n^-)$, the subalgebra generated by F_i.

[Lusztig, Kashiwara]: $U_q(n^-)$ has a **canonical basis**, which

- is bar-invariant,
- descends to a basis for each h. wt. integrable module,
- has structure constants in $\mathbb{N}[q, q^{-1}]$ (symmetric type).

Relation to categorification:

$U_q(n^-)$ categorified by quiver Hecke algebras

[Khovanov-Lauda, Rouquier]: canonical basis \leftrightarrow indecomp. projectives (symmetric type)

[Varagnolo-Vasserot].
CANONICAL BASIS AND CATEGORIZATION

\(U_q(n^-) \), the subalgebra generated by \(F_i \).

[Lusztig, Kashiwara]: \(U_q(n^-) \) has a \textit{canonical basis}, which

\begin{itemize}
 \item is bar-invariant,
 \item descends to a basis for each h. wt. integrable module,
 \item has structure constants in \(\mathbb{N}[q, q^{-1}] \) (symmetric type).
\end{itemize}

Relation to \textit{categorification}:

\begin{itemize}
 \item \(U_q(n^-) \) categorified by quiver Hecke algebras
 [Khovanov-Lauda, Rouquier]
 \item canonical basis \(\leftrightarrow \) indecomp. projectives (symmetric type)
 [Varagnolo-Vasserot].
\end{itemize}
Lie superalgebras

g: a Lie superalgebra (everything is $\mathbb{Z}/2\mathbb{Z}$-graded).
e.g. $\mathfrak{gl}(m|n)$, $\mathfrak{osp}(m|2n)$
LIE SUPERALGEBRAS

g: a Lie superalgebra (everything is \(\mathbb{Z}/2\mathbb{Z} \)-graded).
e.g. \(\mathfrak{gl}(m|n) \), \(\mathfrak{osp}(m|2n) \)

Example: \(\mathfrak{osp}(1|2) \) is the set of \(3 \times 3 \) matrices of the form

\[
A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & c & d \\ 0 & e & -c \end{pmatrix} + \begin{pmatrix} 0 & a & b \\ -b & 0 & 0 \\ a & 0 & 0 \end{pmatrix}
\]

with the super bracket; i.e. the usual bracket, except
\[
[A_1, B_1] = A_1B_1 + B_1A_1.
\]

(Note: The subalgebra of the \(A_0 \) is \(\cong \) to \(\mathfrak{sl}(2) \).)
Quantized Lie superalgebras have been well studied (Benkart, Jeong, Kang, Kashiwara, Kwon, Melville, Yamane, ...)

Our question

Some potential obstructions are:

- Existence of isotropic simple roots: $(\alpha_i, \alpha_i) = 0$
- No integral form, bar involution (e.g. quantum $osp(1|2)$)
- Lack of positivity due to super signs

Experts did not expect canonical bases to exist!
Our question

Quantized Lie superalgebras have been well studied (Benkart, Jeong, Kang, Kashiwara, Kwon, Melville, Yamane, ...)

$U_q(n^-)$: algebra generated by F_i satisfying super Serre relations. Is there a canonical basis à la Lusztig, Kashiwara?
Our question

Quantized Lie superalgebras have been well studied (Benkart, Jeong, Kang, Kashiwara, Kwon, Melville, Yamane, ...)

\(U_q(n^-) \): algebra generated by \(F_i \) satisfying \textit{super} Serre relations. Is there a canonical basis à la Lusztig, Kashiwara?

Some potential obstructions are:

- Existence of isotropic simple roots: \((\alpha_i, \alpha_i) = 0\)
- No integral form, bar involution (e.g. quantum \(\mathfrak{osp}(1|2)\))
- Lack of positivity due to super signs

Experts did not expect canonical bases to exist!
Influence of Categorification

- [KL,R] (’08): quiver Hecke categorify quantum groups
- [KKT11]: introduce quiver Hecke superalgebras (QHSA) (Generalizes a construction of Wang (’06))
- [KKO12]: QHSA’s categorify quantum supergroups (assuming no isotropic roots)
INFLUENCE OF CATEGORIFICATION

- [KL,R] ('08): quiver Hecke categorify quantum groups

- [KKT11]: introduce quiver Hecke superalgebras (QHSA)
 (Generalizes a construction of Wang ('06))
Influence of Categorification

- [KL,R] (’08): quiver Hecke categorify quantum groups

- [KKT11]: introduce quiver Hecke superalgebras (QHSA) (Generalizes a construction of Wang (’06))

- [KKO12]: QHSA’s categorify quantum groups (Generalizes a rank 1 construction of [EKL11])
Influence of Categorification

- [KL,R] (’08): quiver Hecke categorify quantum groups

- [KKT11]: introduce quiver Hecke superalgebras (QHSA) (Generalizes a construction of Wang (’06))

- [KKO12]: QHSA’s categorify quantum groups (Generalizes a rank 1 construction of [EKL11])

- [HW12]: QHSA’s categorify quantum supergroups (assuming no isotropic roots)
Key Insight [HW]: use a parameter $\pi^2 = 1$ for super signs
e.g. a super commutator $AB + BA$ becomes $AB - \pi BA$
Insight from [HW]

Key Insight [HW]: use a parameter $\pi^2 = 1$ for super signs
 e.g. a super commutator $AB + BA$ becomes $AB - \pi BA$

- $\pi = 1 \leadsto$ non-super case.
- $\pi = -1 \leadsto$ super case.
INSIGHT FROM [HW]

Key Insight [HW]: use a parameter $\pi^2 = 1$ for super signs e.g. a super commutator $AB + BA$ becomes $AB - \pi BA$

- $\pi = 1 \mapsto$ non-super case.
- $\pi = -1 \mapsto$ super case.

There is a bar involution on $\mathbb{Q}(q)[\pi]$ given by $q \mapsto \pi q^{-1}$.
Key Insight [HW]: use a parameter \(\pi^2 = 1 \) for super signs e.g. a super commutator \(AB + BA \) becomes \(AB - \pi BA \)

- \(\pi = 1 \) \(\leadsto \) non-super case.
- \(\pi = -1 \) \(\leadsto \) super case.

There is a bar involution on \(\mathbb{Q}(q)[\pi] \) given by \(q \mapsto \pi q^{-1} \).

\[
[n] = \frac{(\pi q)^n - q^{-n}}{\pi q - q^{-1}}, \text{ e.g. } [2] = \pi q + q^{-1}.
\]

Note \(\pi q + q^{-1} \) has positive coefficients. (vs. \(-q + q^{-1} \))

(Important for categorification: e.g. \(F_i^2 = (\pi q + q^{-1})F_i^{(2)} \).)
\textbf{Anisotropic KM}

\[I = I_0 \coprod I_1 \text{ (simple roots), parity } p(i) \text{ with } i \in I_p(i). \]

Symmetrizable generalized Cartan matrix \((a_{ij})_{i,j \in I}\):

- \(a_{ij} \in \mathbb{Z}, a_{ii} = 2, a_{ij} \leq 0;\)
- positive symmetrizing coefficients \(d_i (d_i a_{ij} = d_j a_{ji});\)
- (anisotropy) \(a_{ij} \in 2\mathbb{Z} \text{ for } i \in I_1;\)
- (bar-compatibility) \(d_i = p(i) \text{ mod } 2, \text{ where } i \in I_p(i)\)
EXAMPLES (FINITE AND AFFINE)

(●=odd root)

\[
\begin{align*}
\text{(osp}(1|2n)) & \quad \begin{array}{c}
\bullet \xrightarrow{} \circ \quad \cdots \quad \circ \xrightarrow{} \circ \\
\bullet \xrightarrow{} \circ \quad \cdots \quad \circ \xrightarrow{} \circ
\end{array} \\
\text{osp}(1|2n) & \quad \begin{array}{c}
\bullet \xrightarrow{} \circ \quad \cdots \quad \circ \xrightarrow{} \bullet \\
\bullet \xrightarrow{} \circ \quad \cdots \quad \circ \xrightarrow{} \circ
\end{array} \\
\text{osp}(1|2n) & \quad \begin{array}{c}
\bullet \xrightarrow{} \circ \quad \cdots \quad \circ \xrightarrow{} \circ \\
\bullet \xrightarrow{} \circ \quad \cdots \quad \circ \xrightarrow{} \circ
\end{array}
\end{align*}
\]
Finite type

The only finite type covering algebras have Dynkin diagrams

\[\bullet \leftrightarrow \bigcirc \cdots \bigcirc \bigcirc \bigcirc \]
FINITE TYPE

The only finite type covering algebras have Dynkin diagrams

```
● ← ○ → ● · · · ○ → ○ ○ ○
```

This diagram corresponds to

- the Lie superalgebra $\mathfrak{osp}(1|2n)$

[Zou98]
Finite type

The only finite type covering algebras have Dynkin diagrams

This diagram corresponds to
- the Lie superalgebra $\mathfrak{osp}(1|2n)$
- the Lie algebra $\mathfrak{so}(1 + 2n)$
Finite type

The only finite type covering algebras have Dynkin diagrams

This diagram corresponds to
- the Lie superalgebra $\mathfrak{osp}(1|2n)$
- the Lie algebra $\mathfrak{so}(1 + 2n)$

These algebras have similar representation theories.
- $\mathfrak{osp}(1|2n)$ irreps \leftrightarrow half of $\mathfrak{so}(2n + 1)$ irreps.
FINITE TYPE

The only finite type covering algebras have Dynkin diagrams

This diagram corresponds to

- the Lie superalgebra $\mathfrak{osp}(1|2n)$
- the Lie algebra $\mathfrak{so}(1 + 2n)$

These algebras have similar representation theories.

- $\mathfrak{osp}(1|2n)$ irreps \leftrightarrow half of $\mathfrak{so}(2n + 1)$ irreps.
- $U_q(\mathfrak{osp}(1|2n))/\mathbb{C}(q) \leftrightarrow$ all of $U_q(\mathfrak{so}(2n + 1))$ irreps. [Zou98]
Rank 1

[CW]: $U_q(\mathfrak{osp}(1|2))/\mathbb{Q}(q)$ can be tweaked to get all reps.

$$EF - \pi FE = \frac{1K - K^{-1}}{\pi q - q^{-1}} \quad \text{or} \quad \frac{\pi K - K^{-1}}{\pi q - q^{-1}}$$

- even h.w.
- odd h.w.
Rank 1

[CW]: $U_q(\mathfrak{osp}(1|2))/\mathbb{Q}(q)$ can be tweaked to get all reps.

$$EF - \pi FE = \frac{\pi^h K - K^{-1}}{\pi q - q^{-1}} \quad (h \text{ the Cartan generator}) \quad (*)$$
[CW]: $\mathcal{U}_q(\mathfrak{osp}(1|2))/\mathbb{Q}(q)$ can be tweaked to get all reps.

$$EF - \pi FE = \frac{\pi^h K - K^{-1}}{\pi q - q^{-1}}$$ \hspace{1cm} (h the Cartan generator) \hspace{1cm} (*)

New definition: generators E, F, K^\pm, J, relations

$$J^2 = 1, \hspace{0.5cm} JK = KJ,$$

$$JEJ^{-1} = E, \hspace{0.5cm} KEK^{-1} = q^2 E, \hspace{0.5cm} JFJ^{-1} = F, \hspace{0.5cm} KFK^{-1} = q^{-2} F,$$

$$EF - \pi F_j E_i = \frac{JK - K^{-1}}{\pi q - q^{-1}};$$ \hspace{1cm} (*')

(If h is the Cartan element, $K = q^h$ and $J = \pi^h$.)
Definition of Quantum Covering Groups

Let A be a symmetrizable GCM. U is the $\mathbb{Q}(q)[\pi]$-algebra with generators $E_i, F_i, K_i^{\pm 1}, J_i$ and relations

$$J_i^2 = 1, \quad J_iK_i = K_iJ_i, \quad J_iJ_j = J_jJ_i$$

$$J_iE_jJ_i^{-1} = \pi^{a_{ij}}E_j, J_iF_jJ_i^{-1} = \pi^{-a_{ij}}F_j.$$

$$E_iF_j - \pi^{p(i)p(j)}F_jE_i = \delta_{ij}\frac{J_i^{d_i}K_i^{d_i} - K_i^{-d_i}}{(\pi q)^{d_i} - q^{-d_i}};$$

and others (super quantum Serre, usual K relations).
DEFINITION OF QUANTUM COVERING GROUPS

Let A be a symmetrizable GCM. U is the $\mathbb{Q}(q)[\pi]$-algebra with generators $E_i, F_i, K_i^{\pm 1}, J_i$ and relations

\[J_i^2 = 1, \quad J_i K_i = K_i J_i, \quad J_i J_j = J_j J_i \]

\[J_i E_j J_i^{-1} = \pi^{a_{ij}} E_j, J_i F_j J_i^{-1} = \pi^{-a_{ij}} F_j. \]

\[E_i F_j - \pi^{p(i)p(j)} F_j E_i = \delta_{ij} \frac{J_i^{d_i} K_i^{d_i} - K_i^{-d_i}}{(\pi q)^{d_i} - q^{-d_i}}; \]

and others (super quantum Serre, usual K relations).

Bar involution: $\bar{q} = \pi q^{-1}, \bar{K}_i = J_i K_i^{-1}, \bar{E}_i = E_i, \bar{F}_i = F_i$

Can also define a bar-invariant integral $\mathbb{Z}[q, q^{-1}, \pi]$-form!
RELATION TO QUANTUM (SUPER)GROUPS

By specifying a value of π, we have maps

$$U|_{\pi=-1} \quad \quad \quad U|_{\pi=1}$$

- $U|_{\pi=1}$ is a quantum group (forgets $\mathbb{Z}/2\mathbb{Z}$ grading).
- $U|_{\pi=-1}$ is a quantum supergroup.
REPRESENTATIONS

X: integral weights, X^+: dominant integral weights.

A weight module is a U-module $M = \bigoplus_{\lambda \in X} M_{\lambda}$, where

$$M_{\lambda} = \left\{ m \in M : K_i m = q^{\langle h_i, \lambda \rangle} m, \quad J_i m = \pi^{\langle h_i, \lambda \rangle} m \right\}.$$
Representations

X: integral weights, X^+: dominant integral weights.

A weight module is a U-module $M = \bigoplus_{\lambda \in X} M_\lambda$, where

$$M_\lambda = \left\{ m \in M : K_i m = q^{\langle h_i, \lambda \rangle} m, \quad J_i m = \pi^{\langle h_i, \lambda \rangle} m \right\}.$$

Example: $U_q(osp(1|2))$, $X = \mathbb{Z}$, $X^+ = \mathbb{N}$ and $M = \bigoplus_{n \in \mathbb{Z}} M_n$.

$$Jm = \pi^n m, \quad Km = q^n m \quad (m \in M_n)$$
Can define highest-weight (h.w.) and integrable (int.) modules.

Theorem (C-Hill-Wang)

For each $\lambda \in X^+$, there is a unique simple ("π-free") module $V(\lambda)$ of highest weight λ. Any ("π-free") h.wt. int. M is a direct sum of these $V(\lambda)$.

(π-free: π acts freely)
Representations

Can define highest-weight (h.w.) and integrable (int.) modules.

Theorem (C-Hill-Wang)
For each $\lambda \in X^+$, there is a unique simple ("π-free") module $V(\lambda)$ of highest weight λ. Any ("π-free") h.wt. int. M is a direct sum of these $V(\lambda)$.
(π-free: π acts freely)

Example: $U_q(osp(1|2))$ has simple π-free modules $V(n)$, which are free $\mathbb{Q}(q)[\pi]$-modules of rank $n + 1$. (Like $\mathfrak{sl}(2)$!)

$$V(n) = \left[V(n)\big|_{\pi=1}\right] \oplus \left[V(n)\big|_{\pi=-1}\right]$$

$\dim_{\mathbb{Q}(q)} = n+1$ $\dim_{\mathbb{Q}(q)} = n+1$
Approaches to Canonical Bases

Two potential approaches to constructing a canonical basis:

- [Lusztig] using geometry
- [Kashiwara] algebraically using crystals ("$q = 0$")
Two potential approaches to constructing a canonical basis:

- [Lusztig] using geometry
- [Kashiwara] algebraically using crystals ("q = 0")

Analogous geometry for super is unknown.
Two potential approaches to constructing a canonical basis:
- [Lusztig] using geometry
- [Kashiwara] algebraically using crystals ("$q = 0$")

Analogous geometry for super is unknown.

There are various crystal structures in modules:
- $\mathfrak{osp}(1|2n)$ [Musson-Zou] ('98)
- $\mathfrak{gl}(m|n)$ [Benkart-Kang-Kashiwara] ('00), [Kwon] ('12)
- for KM superalgebra with "even" weights [Jeong] ('01)

No examples of canonical bases.
Why believe?

No examples despite extensive study, experts don’t believe. Why *should* canonical bases exist?
Why believe?

No examples despite extensive study, experts don’t believe. Why should canonical bases exist?

Because now we have

- a better definition of U (all h. wt. modules $/\mathbb{Q}(q)$);
Why believe?

No examples despite extensive study, experts don’t believe. Why should canonical bases exist?

Because now we have

- a better definition of U (all h. wt. modules / $\mathbb{Q}(q)$);
- a good bar involution;
- a bar-invariant integral form;
Why believe?

No examples despite extensive study, experts don’t believe. Why should canonical bases exist?

Because now we have

- a better definition of U (all h. wt. modules $/\mathbb{Q}(q)$);
- a good bar involution;
- a bar-invariant integral form;
- a categorical canonical basis.

This motivates us to try again generalizing Kashiwara.
CRYSTALS

We can define Kashiwara operators \tilde{e}_i, \tilde{f}_i.

Let $A \subset \mathbb{Q}(q)[\pi]$ be the ring of functions with no pole at $q = 0$.

$V(\lambda)$ is said to have a **crystal basis** (\mathcal{L}, B) if

- \mathcal{L} is a A-lattice of $V(\lambda)$ closed under \tilde{e}_i, \tilde{f}_i

and $B \subset \mathcal{L}/q\mathcal{L}$ satisfies

- B is a π-basis of $\mathcal{L}/q\mathcal{L}$; (i.e. signed at $\pi = -1$: $B = B \cup \pi B$)
- $\tilde{e}_i B \subseteq B \cup \{0\}$ and $\tilde{f}_i B \subseteq B \cup \{0\}$;
- For $b \in B$, if $\tilde{e}_i b \neq 0$ then $b = \tilde{f}_i \tilde{e}_i b$.

As in the $\pi = 1$ case, the crystal lattice/basis is unique.
We can define Kashiwara operators \tilde{e}_i, \tilde{f}_i.

Let $\mathcal{A} \subset \mathbb{Q}(q)[\pi]$ be the ring of functions with no pole at $q = 0$.

$V(\lambda)$ is said to have a **crystal basis** (\mathcal{L}, B) if

- \mathcal{L} is a \mathcal{A}-lattice of $V(\lambda)$ closed under \tilde{e}_i, \tilde{f}_i

and $B \subset \mathcal{L}/q\mathcal{L}$ satisfies

- B is a π-basis of $\mathcal{L}/q\mathcal{L}$; (i.e. signed at $\pi = -1$: $B = B \cup \pi B$)
- $\tilde{e}_i B \subseteq B \cup \{0\}$ and $\tilde{f}_i B \subseteq B \cup \{0\}$;
- For $b \in B$, if $\tilde{e}_i b \neq 0$ then $b = \tilde{f}_i \tilde{e}_i b$.

As in the $\pi = 1$ case, the crystal lattice/basis is unique.
We can define Kashiwara operators \tilde{e}_i, \tilde{f}_i.

Let $\mathcal{A} \subset \mathbb{Q}(q)[\pi]$ be the ring of functions with no pole at $q = 0$.

$V(\lambda)$ is said to have a crystal basis (\mathcal{L}, B) if
- \mathcal{L} is a \mathcal{A}-lattice of $V(\lambda)$ closed under \tilde{e}_i, \tilde{f}_i
and $B \subset \mathcal{L}/q\mathcal{L}$ satisfies
 - B is a π-basis of $\mathcal{L}/q\mathcal{L}$; (i.e. signed at $\pi = -1$: $B = B \cup \pi B$)
 - $\tilde{e}_i B \subseteq B \cup \{0\}$ and $\tilde{f}_i B \subseteq B \cup \{0\}$;
 - For $b \in B$, if $\tilde{e}_i b \neq 0$ then $b = \tilde{f}_i \tilde{e}_i b$.

As in the $\pi = 1$ case, the crystal lattice/basis is unique.
Theorem (C-Hill-Wang)

The pairs \((L(\lambda), B(\lambda))\) for \(\lambda \in X^+ \cup \{\infty\}\) are crystal bases. Moreover, there exist maps \(G: L(\lambda)/qL(\lambda) \to L(\lambda)\) such that \(G(B(\lambda))\) is a bar-invariant \(\pi\)-basis of \(V(\lambda)\).

We call \(G(B(\lambda))\) the canonical basis of \(V(\lambda)\).

\[V(\lambda) \supseteq L(\lambda) = \sum A\tilde{f}_{i_1} \ldots \tilde{f}_{i_n} v_\lambda, \quad B(\lambda) = \left\{ \pi^\epsilon \tilde{f}_{i_1} \ldots \tilde{f}_{i_n} v_\lambda + qL(\lambda) \right\} \]

\((\lambda \in X^+ \cup \{\infty\}, V(\infty) = U^-)\)
Canonical Basis

We set

\[V(\lambda) \supset L(\lambda) = \sum A \tilde{f}_{i_1} \ldots \tilde{f}_{i_n} v_{\lambda}, \quad B(\lambda) = \left\{ \pi^{\epsilon} \tilde{f}_{i_1} \ldots \tilde{f}_{i_n} v_{\lambda} + q L(\lambda) \right\} \]

\[(\lambda \in X^+ \cup \{\infty\}, V(\infty) = U^-)\]

Theorem (C-Hill-Wang)

The pairs \((L(\lambda), B(\lambda))\) for \(\lambda \in X^+ \cup \{\infty\}\) are crystal bases.

Moreover, there exist maps \(G : L(\lambda)/qL(\lambda) \rightarrow L(\lambda)\) such that \(G(B(\lambda))\) is a bar-invariant \(\pi\)-basis of \(V(\lambda)\).

We call \(G(B(\lambda))\) the canonical basis of \(V(\lambda)\).

\((\pi = -1: \text{first canonical bases for quantum supergroups!})\)
Main obstacle in proof

Most of Kashiwara’s arguments generalize (with extra signs).
Main obstacle in proof

Most of Kashiwara’s arguments generalize (with extra signs).

Kashiwara’s construction of G requires $\rho(\mathcal{L}(\infty)) \subset \mathcal{L}(\infty)$ where ρ is an anti-automorphism of U^-. Super signs cause non-positivity problems \Rightarrow usual proof fails.
MAIN OBSTACLE IN PROOF

Most of Kashiwara’s arguments generalize (with extra signs).

Kashiwara’s construction of G requires $\rho(\mathcal{L}(\infty)) \subset \mathcal{L}(\infty)$ where ρ is an anti-automorphism of U^-.

Super signs cause non-positivity problems \Rightarrow usual proof fails.

New idea: a twistor (from work with Fan, Li, Wang [CFLW]).

\[
U^-|_{\pi=1} \otimes \mathbb{C} \xrightarrow{\cong} U^-|_{\pi=-1} \otimes \mathbb{C}
\]

which is almost an algebra isomorphism.

Good enough: the ρ-invariance at $\pi = 1$ transports to $\pi = -1$.
Why must the basis be signed?

Example: $I = I_1 = \{i, j\}$ such that $a_{ij} = a_{ji} = 0$.

$$F_i F_j = \pi F_j F_i$$

Should $F_i F_j$ or $F_j F_i$ be in $B(\infty)$? No preferred canonical choice.
Why must the basis be signed?

Example: $I = I_1 = \{i, j\}$ such that $a_{ij} = a_{ji} = 0$.

$$F_i F_j = \pi F_j F_i$$

Should $F_i F_j$ or $F_j F_i$ be in $B(\infty)$? No preferred canonical choice.

This is not a bad thing!

- A π-basis is an honest $\mathbb{Q}(q)$-basis (for π-free modules)!
- Categorically: represents “spin states” of QHSA modules.
CANONICAL BASES AND THE WHOLE QUANTUM GROUP

Can the canonical basis on U^- be extended to U?
Not directly: U^0 makes such a construction difficult.
Can the canonical basis on U^- be extended to U?
Not directly: U^0 makes such a construction difficult.

The ‘right’ construction is to explode U^0 into idempotents.
(Beilinson-Lusztig-McPherson (type A), Lusztig)

$$1 \mapsto \sum_{\lambda \in X} 1_\lambda \text{ with } 1_\lambda 1_\eta = \delta_{\lambda, \eta} 1_\lambda, \quad K_i \mapsto \sum_{\lambda \in X} q^{\langle h_i, \lambda \rangle} 1_\lambda$$
Can the canonical basis on U^- be extended to U?
Not directly: U^0 makes such a construction difficult.

The ‘right’ construction is to explode U^0 into idempotents.
(Beilinson-Lusztig-McPherson (type A), Lusztig)

$$1 \leadsto \sum_{\lambda \in X} 1_\lambda \text{ with } 1_\lambda 1_\eta = \delta_{\lambda,\eta} 1_\lambda, \quad K_i \leadsto \sum_{\lambda \in X} q^{\langle h_i, \lambda \rangle} 1_\lambda$$

\dot{U} is the algebra on symbols $x 1_\lambda = 1_{\lambda + |x|} x$ for $x \in U, \lambda \in X$.

$x 1_\lambda = \text{projection to } \lambda\text{-wt. space followed by the action of } x$.
Rank 1

\[\mathcal{U}_q(\mathfrak{osp}(1|2)) \] is the algebra given by

Generators: \(E_1^n = 1_{n+2} E, \quad F_1^n = 1_{n-2} F, \quad 1_n \)

Relations: \(1_n 1_m = \delta_{nm} 1_n, \quad (E_1^{n-2})(F_1^n) - (F_1^{n+2})(E_1^n) = [n]1_n \)
\textbf{Rank 1}

$\mathcal{U}_q(\mathfrak{osp}(1|2))$ is the algebra given by

\textbf{Generators:} \quad E_{1n} = 1_{n+2}E, \quad F_{1n} = 1_{n-2}F, \quad 1_n

\textbf{Relations:} \quad 1_n1_m = \delta_{nm}1_n, \quad (E_{1n-2})(F_{1n}) - (F_{1n+2})(E_{1n}) = [n]1_n

\textbf{Theorem (C-Wang)}

$\mathcal{U}_q(\mathfrak{osp}(1|2))$ admits a canonical basis

\[\hat{B} = \left\{ E^{(a)}1_nF^{(b)}, \pi^{ab}F^{(b)}1_nE^{(a)} \mid a + b \geq n \right\}. \]
Rank 1

$\mathcal{U}_q(osp(1|2))$ is the algebra given by

Generators: $E_1 = 1_{n+2}, F_1 = 1_{n-2}, 1_n$

Relations: $1_n 1_m = \delta_{nm} 1_n$, $(E_1)(F_1) - (F_1)(E_1) = [n] 1_n$

Theorem (C-Wang)

$\mathcal{U}_q(osp(1|2))$ admits a canonical basis

\[\hat{B} = \left\{ E^{(a)} 1_n F^{(b)}, \pi^{ab} F^{(b)} 1_n E^{(a)} \mid a + b \geq n \right\}. \]

We conjectured $\mathcal{U}_q(osp(1|2))$ admits a categorification, and Ellis and Lauda (’13) recently verified our conjecture.
Theorem (C)
\(\dot{U} \) admits a \(\pi \)-signed canonical basis generalizing the basis for \(U^- \).
For \(\pi = 1 \), this specializes to Lusztig’s canonical basis for \(U|_{\pi=1} \).
Canonical Basis

Theorem (C)

\hat{U} admits a π-signed canonical basis generalizing the basis for U^-. For $\pi = 1$, this specializes to Lusztig’s canonical basis for $\hat{U}|_{\pi=1}$.

Idea of proof (generalizing Lusztig):
Consider modules $N(\lambda, \lambda') \to \hat{U}1_{\lambda-\lambda'}$ as $\lambda, \lambda' \to \infty$.
Theorem (C)
\(\hat{U} \) admits a \(\pi \)-signed canonical basis generalizing the basis for \(U^- \).
For \(\pi = 1 \), this specializes to Lusztig’s canonical basis for \(\hat{U}|_{\pi=1} \).

Idea of proof (generalizing Lusztig):
Consider modules \(N(\lambda, \lambda') \to \hat{U}1_{\lambda-\lambda'} \) as \(\lambda, \lambda' \to \infty \).

Define epimorphisms \(t : N(\lambda + \lambda'', \lambda'' + \lambda') \to N(\lambda, \lambda') \).
({\(N(\lambda, \lambda') \)} with \(t \) forms a projective system)
Theorem (C)
\(\hat{U} \) admits a \(\pi \)-signed canonical basis generalizing the basis for \(U^- \). For \(\pi = 1 \), this specializes to Lusztig’s canonical basis for \(\hat{U}\big|_{\pi=1} \).

Idea of proof (generalizing Lusztig):
Consider modules \(N(\lambda, \lambda') \to \hat{U}1_{\lambda-\lambda'} \) as \(\lambda, \lambda' \to \infty \).

Define epimorphisms \(t : N(\lambda + \lambda'', \lambda'' + \lambda') \to N(\lambda, \lambda') \).
\(\{N(\lambda, \lambda')\} \) with \(t \) forms a projective system.

Construct suitable bar involution, canonical basis on \(N(\lambda, \lambda') \).
Canonical Basis

Theorem (C)
\(\hat{U} \) admits a \(\pi \)-signed canonical basis generalizing the basis for \(U^- \).
For \(\pi = 1 \), this specializes to Lusztig’s canonical basis for \(\hat{U}|_{\pi=1} \).

Idea of proof (generalizing Lusztig):
Consider modules \(N(\lambda, \lambda') \to \hat{U}1_{\lambda-\lambda'} \) as \(\lambda, \lambda' \to \infty \).

Define epimorphisms \(t : N(\lambda + \lambda'', \lambda'' + \lambda') \to N(\lambda, \lambda') \).
\(\{N(\lambda, \lambda')\} \) with \(t \) forms a projective system)

Construct suitable bar involution, canonical basis on \(N(\lambda, \lambda') \).

The canonical basis is stable under the projective limit \(\Rightarrow \) induces a bar-invariant canonical basis on \(\hat{U} \).
FURTHER DIRECTIONS

- Construction of braid group action à la Lusztig
 - Forthcoming work with D. Hill
FURTHER DIRECTIONS

- Construction of braid group action à la Lusztig
 - Forthcoming work with D. Hill

- Canonical bases for other Lie superalgebras
 - $\mathfrak{gl}(m|1), \mathfrak{osp}(2|2n)$ using quantum shuffles [CHW3]
 - Open question in general; e.g. $\mathfrak{gl}(2|2)$.
FURTHER DIRECTIONS

- Construction of braid group action à la Lusztig
 - Forthcoming work with D. Hill

- Canonical bases for other Lie superalgebras
 - $\mathfrak{gl}(m|1), \mathfrak{osp}(2|2n)$ using quantum shuffles [CHW3]
 - Open question in general; e.g. $\mathfrak{gl}(2|2)$.

- Categorification for covering quantum groups
 - Connection to odd link homologies (Khovanov)
 - Tensor modules?
 - Higher rank?
Some Related Papers

Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), pp. 447–498

Ellis, Khovanov, Lauda, The odd nilHecke algebra and its diagrammatics, IMRN 2014 pp. 991–1062

Fan and Li, Two-parameter quantum algebras, canonical bases and categorifications, arXiv:1303.2429

Slides available at
http://people.virginia.edu/~sic5ag/

Thank you for your attention!