A canonical basis for covering quantum groups

Sean Clark
Joint work with D. Hill and W. Wang
University of Virginia

AMS Fall Western Sectional Meeting
University of California, Riverside
November 2, 2013
Quantum Groups

q: a generic parameter;
\mathfrak{g}: a Kac-Moody algebra with simple roots $\Pi = \{\alpha_i : i \in I\}$.
$U_q(\mathfrak{g})$ is the $\mathbb{Q}(q)$ algebra with generators $E_i, F_i, K_i^{\pm 1}$ for $i \in I$.
$U_q(n^-)$, the subalgebra generated by F_i.

$U_q(n^-)$ has many interesting properties, e.g.
- Lusztig-Kashiwara canonical basis;
- categorifications of Khovanov-Lauda and Rouquier;

$U_q(\mathfrak{g})$ admits a categorification for its modified form [L, KL, R].
HALF QUANTUM SUPERGROUPS

\(\mathfrak{g} \): an anisotropic Kac-Moody superalgebra with \(\mathbb{Z}/2\mathbb{Z} \)-graded simple roots \(\Pi = \Pi_0 \sqcup \Pi_1 = \{ \alpha_i : i \in I \} \)

\(\mathcal{U}_q(n^-) \): algebra generated by \(F_i \) satisfying *super* Serre relations. Was not expected to admit a canonical basis.

Super KLR= quiver Hecke superalgebras
(Ellis-Khovanov-Lauda in rank 1, Kang-Kashiwara-Tsuchioka independently defined the general construction)

[Hill-Wang] \(\mathcal{U}_q(n^-) \) is categorified by QHSA’s.
\(\Rightarrow \) It has a categorical canonical basis.

Is there an intrinsic canonical basis à la Lusztig, Kashiwara?
INSIGHT FROM [HW]

Anisotropic super and non-super are formally similar

Key Insight [HW]: use a parameter $\pi^2 = 1$ for super signs

▶ $\pi = 1 \leadsto$ non-super case.
▶ $\pi = -1 \leadsto$ super case.

There is a bar involution on $\mathbb{Q}(q)^\pi = \mathbb{Q}(q, \pi)/(\pi^2 - 1)$ given by

$$q \mapsto \pi q^{-1} \quad (\pi^2 = 1)$$

and quantum integers

$$[n] = \frac{(\pi q)^n - q^{-n}}{\pi q - q^{-1}}, \quad [n]!, \quad \begin{bmatrix} n \\ a \end{bmatrix} \in \mathbb{Z}[q, q^{-1}].$$

giving $U_q(n^-)$ a suitable bar-invariant integral form.
Anisotropic KM

We consider a KM superalgebra with GCM A indexed by $I = I_0 \sqcup I_1$ (simple roots) and satisfying:

- $a_{ij} \in \mathbb{Z}$, $a_{ii} = 2$, $a_{ij} \leq 0$
- there exist positive symmetrizing coefficients d_i ($d_i a_{ij} = d_j a_{ji}$)
- (anisotropy) $a_{ij} \in 2\mathbb{Z}$ for $i \in I_1$

We call these “of anisotropic type”. We will also impose:

- (bar-compatibility) $d_i \equiv_2 p(i)$
EXAMPLES

(●=odd root)

\[\text{osp}(1|2n) \]
Known Facts about KM Super

Quantized Lie superalgebras have been well studied (Benkart, Jeong, Kang, Kashiwara, Kwon, Musson, Zou, ...)

Some key coincidences exist for anisotropic KM:

- $\mathfrak{osp}(1|2n)$ reps “=” half of $\mathfrak{so}(2n+1)$ reps (R.B. Zhang, Lanzmann)

- Over $\mathbb{C}(q)$, $U_q(\mathfrak{osp}(1|2n))$ miraculously has the missing reps. (Musson-Zou)

[CW]: $U_q(\mathfrak{osp}(1|2)) / \mathbb{Q}(q)$ can be tweaked to get all reps.

$$EF - \pi FE = \frac{K - K^{-1}}{\pi q - q^{-1}}$$ or $$\frac{\pi K - K^{-1}}{\pi q - q^{-1}}$$

even h.w. odd h.w.
DEFINITION [CHW1]

Let \(g \) be a KM superalgebra of anisotropic type, \(A \) its symmetrizable GCM.
Let \(U = U_q(g) \) be the \(\mathbb{Q}(q) \)-algebra with generators \(E_i, F_i, K_i^{\pm 1}, J_i \) such that

\[
J_i^2 = 1, \quad J_i K_i = K_i J_i, \quad J_i J_j = J_j J_i, \quad K_i K_j = K_j K_i,
\]

\[
J_i E_j J_i^{-1} = \pi a_{ij} E_j, \quad K_i E_j K_i^{-1} = q a_{ij} E_j,
\]

\[
J_i F_j J_i^{-1} = \pi^{-a_{ij}} F_j, \quad K_i F_j K_i^{-1} = q^{-a_{ij}} F_j,
\]

\[
E_i F_j - \pi^{p(i)p(j)} F_j E_i = \delta_{ij} \frac{J_i^{d_i} K_i^{d_i} - K_i^{-d_i}}{(\pi q)^{d_i} - q^{-d_i}},
\]

\[
\sum_{k=0}^{1-a_{ij}} (-1)^k \pi^{p(k;i,j)} E_i^{(1-a_{ij}-k)} E_j E_i^{(k)} = \sum_{k=0}^{1-a_{ij}} (-1)^k \pi^{p(k;i,j)} F_i^{(1-a_{ij}-k)} F_j F_i^{(k)} = 0,
\]

where \(p(k; i, j) = kp(i)p(j) + \frac{1}{2} k(k - 1)p(i) \).
RANK 1

For $U_q(\mathfrak{osp}(1|2))$

Generators: $E, F, K^{\pm 1}, J$

Relations:

$$J^2 = 1, \quad JK = KJ,$$

$$JEJ^{-1} = E, \quad KEK^{-1} = q^2 E,$$

$$JFJ^{-1} = F, \quad KFK^{-1} = q^{-2} F,$$

$$EF - \pi F_j E_i = \frac{JK - K^{-1}}{\pi q - q^{-1}};$$

(If h is the Cartan element, $K = q^h$ and $J = \pi^h$.)

We call this covering quantum $\mathfrak{osp}(1|2)$ or $\mathfrak{sl}(2)$ ($\pi = 1$ case)
FINITE TYPE

The only finite type covering algebras have Dynkin diagrams

![Dynkin diagram](attachment:image.png)

This diagram corresponds to
- the Lie superalgebra $\mathfrak{osp}(1|2n)$
- the Lie algebra $\mathfrak{so}(1 + 2n)$

(NB. There is no "covering $\mathfrak{sl}(n)$" in this construction)
Structures in a Covering Quantum Group

U has all the nice features you could hope for:

- $U = U^- \otimes U^0 \otimes U^+$;
- U^- admits a nondegenerate bilinear form;
- there is a Hopf superalgebra structure (super sign $\mapsto \pi$);
- there is a bar involution ($K \mapsto JK^{-1}$);
- there is a quasi-R-matrix and Casimir-type operator;
Representations

Let $P (P^+)$ be the set of (dominant) weights of \mathfrak{g}.

A weight module is a $\mathcal{U}_q(\mathfrak{g})$-module $M = \bigoplus_{\lambda \in P} M^\lambda$, where

$$M^\lambda = \left\{ m \in M : K_i m = q^{\langle h_i, \lambda \rangle} m, \quad J_i m = \pi^{\langle h_i, \lambda \rangle} m \right\}.$$

We can define highest-weight and integrable modules as usual to obtain a semi-simple category \mathcal{O}_{int}.

Simple modules: $V(\lambda)$ for all $\lambda \in P^+$
(Same character as in classical case)
CRYSTALS

To construct a CB, we use the algebraic approach with crystals. Specifically, we construct a covering analogue for

- Kashiwara operators \tilde{e}_i, \tilde{f}_i;
- the crystal lattice;
- the action of the q-Boson algebra;
- the polarizations (= deformed Shapovalov forms);
- the tensor product rule;

Kashiwara’s grand loop argument can be extended to the covering case.

Moreover, this crystal basis admits globalization to a canonical basis.
CANONICAL BASIS

Theorem (C-Hill-Wang)

$U^- \text{ and the integrable modules admit compatible canonical bases.}$

Let B be the canonical basis of U^-.

- If v_λ is the highest weight vector of $V(\lambda)$,

 $$bv_\lambda = 0 \text{ or is a CB element.}$$

- $B|_{\pi=1} =$ the Lusztig-Kashiwara CB

- B is typically π-signed: $b \in B$ implies $\pi b \in B$.

Example: $a_{ij} = 0, p(i) = p(j) = 1$

$$F_iF_j = \pi F_j F_i$$

(Categorically: M is not isomorphic to its parity shift ΠM.)
Modified Form

Basic idea: \(1 \sim \sum_{\lambda \in P} 1_{\lambda} \) with \(1_{\lambda} 1_{\eta} = \delta_{\lambda, \eta} 1_{\lambda} \)

For \(x \in U \), let \(|x|\) be the weight.

\(\hat{U} \) is the algebra on symbols \(x1_{\lambda} = 1_{\lambda + |x|}x \) for \(x \in U, \lambda \in P \) satisfying

\[
(xy)1_{\lambda} = x1_{\lambda + |y|}y1_{\lambda}, \quad J_{\mu}K_{\nu}1_{\lambda} = \pi^{\langle \mu, \lambda \rangle}q^{\langle \nu, \lambda \rangle}1_{\lambda}
\]

Any weight \(U \)-module \(M \) is a \(\hat{U} \) module:
\(x1_{\lambda} \) acts as projection to \(M^{\lambda} \) followed by the \(U \)-action of \(x \).
SOME PROPERTIES

\mathcal{U} has some additional useful properties:

- Automorphisms of \mathcal{U} extend to \mathcal{U};
- $\mathcal{U}_1^\lambda \overset{v.s.}{=} \mathcal{U}^- \otimes \mathcal{U}^+$;

Theorem (C.)

There is a non-degenerate symmetric bilinear form on \mathcal{U} which:

- extends the form on \mathcal{U}^-;
- is invariant under our favorite maps;
- is a limit of polarizations;

For $\pi = 1$, this is Lusztig’s form on \mathcal{U}.
RANK 1

$\hat{U}_q(\mathfrak{osp}(1|2))$ is the algebra given by

Generators: $E1_n = 1_{n+2}E$, $F1_n = 1_{n-2}F$, 1_n

Relations: $1_n 1_m = \delta_{nm} 1_n$ and $EF1_n - FE1_n = [n]1_n$

Theorem (C-Wang)

$\hat{U}_q(\mathfrak{osp}(1|2))$ admits a canonical basis

$$\hat{B} = \left\{ E^{(a)}1_nF^{(b)}, \pi^{ab}F^{(b)}1_nE^{(a)} \mid a + b \geq n \right\}.$$

(In rank 1, the basis need not be π-signed)

Ellis and Lauda have categorified $\hat{U}_q(\mathfrak{osp}(1|2))$.
CONSTRUCTING THE CB

- $\hat{U}1_{\lambda - \lambda'}$ projects "nicely" onto $N(\lambda, \lambda')$ (highest weight \otimes lowest weight);
- $N(\lambda, \lambda')$ has a bar involution (Lusztig quasi-\mathcal{R}-matrix);
- $N(\lambda, \lambda')$ admits a CB (bar involution + CB on simples);
- The CB of $N(\lambda, \lambda')$ is compatible with $N(\lambda + \lambda'', \lambda'' + \lambda')$;

These facts allow us to build a basis for \hat{U}.
Theorem (C)
\(\hat{U} \) admits a \(\pi \)-signed canonical basis generalizing the basis for \(U^- \). This basis is \(\pi \)-almost orthonormal under the bilinear form. For \(\pi = 1 \), this specializes to Lusztig’s canonical basis for \(\hat{U}|_{\pi=1} \).
SOME RELATED PAPERS

[C] Quantum supergroups IV. Modified form, forthcoming.

Slides available at
http://people.virginia.edu/~sic5ag/
Thank you for your attention!