
Sean Ian Clark Research Statement
My primary research interests lie in representation theory, and its connections with algebraic

combinatorics, topology, geometry, and categorification. Specifically, I am most interested in the

representation theory of quantum algebras, such as the quantized enveloping Lie (super)algebras,

(q-)Schur (super)algebras, and (quiver) Hecke algebras. These algebras are deformations of classical

algebras, which are related to a variety of topics, including knot invariants and topological quantum

field theories, the combinatorics of Young tableaux and crystals, and higher representation theory.

My current research program involves the construction of canonical bases for quantum Lie super-

algebras, and connecting these bases to categorifications appearing in higher representation theory.

The canonical basis of a quantum algebra is a basis with a number of remarkable qualities. Re-

cently, such bases have been realized to make deep connections with other areas of mathematics,

often through higher representation theory (HRT) as pioneered by Chuang and Rouquier. In this

setting, canonical bases typically encode an analogue of Kazhdan-Lusztig theory for the category.

On the other hand, Lie superalgebras are a generalization of Lie algebras motivated, in part,

by supersymmetry in physics. These algebras are very similar to Lie algebras, but the differences

have dramatic consequences. As a result, while their quantum enveloping superalgebras are natural

settings to look for more examples of canonical bases, it is not clear that such bases can even exist

in general. However, in recent years, I have been working on constructing examples in special cases

with my collaborators, and now have several concrete examples to use to develop the general theory.

The projects I plan to pursue in the near future generally fall into the following directions:

• Completing the program of establishing foundational results for covering quantum groups;

• Pursuing a deeper understanding of the fundamental quantum supergroup Uq(gl(m|n)), its

crystal combinatorics, and the potential for canonical bases;

• Developing further constructions of canonical bases and pursuing a more general theory of

canonical bases for (basic) Lie superalgebras;

• Developing HRT categorifications of quantum enveloping superalgebras and their represen-

tations.

In the following sections, I will provide a more detailed summary of the background topics; discuss

my previous work supporting these directions; and outline the potential projects and outcomes.

1. Background

1.1. Quantum groups and canonical bases. The quantum group Uq(g) associated to a semisim-

ple (or Kac-Moody) Lie algebra g is a deformation of the enveloping algebra depending on a

parameter q which recovers the enveloping algebra of the Lie algebra in the limit q → 1. The

study of quantum groups associated to Lie algebras, particularly as important examples of non-

cocommutative Hopf algebras, was initiated by Drin’feld and Jimbo in 1985. Intense study of

the properties of quantum groups followed their introduction, both as objects of physical interest

(in the inverse scattering method for quantum mechanical systems) and for their connections to

low-dimensional topology and 3-manifold invariants.

One of the most remarkable results was the construction of canonical bases for the quantum group

and their integrable modules by Lusztig and Kashiwara ([Lu1, K]) around 1990. The canonical basis

of Uq(g) is a basis for U−q (g) (i.e. the subalgebra generated by the negative root vectors) with several

remarkable qualities. It is an integral (i.e. Z[q, q−1]) basis invariant under the natural involution

q 7→ q−1. The non-zero images of the basis elements on the simple (integrable) modules form a

basis of the module, hence the canonical basis is, in this sense, universal. The canonical basis on

modules also admits a nice combinatorial description “at q = 0” (i.e. in the crystal basis) in terms
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of Young tableaux, which behaves nicely under tensor products. It is orthonormal (modulo q) with

respect to a natural bilinear form. Finally, the transition matrix between the canonical basis and

the PBW basis (associated to any order on the roots) is q-unitriangular.

The constructions given by Lusztig and Kashiwara are quite different. Kashiwara’s approach

was to develop the notion of a crystal: a combinatorial skeleton of a space, together with raising-

and lowering-operators encoding the action of the Chevalley generators. These crystals can be

explicitly described using Young tableaux [KN] and have many beautiful properties (including a

way to interpret branching rules). On the other hand, Lusztig used a geometric construction which

realized the half-quantum group as the Grothendieck ring of a category of perverse sheaves. A

remarkable consequence of Lusztig’s approach is that for simply-laced type, the canonical basis has

strong positivity properties.

1.2. Canonical bases in higher representation theory. The positivity of canonical bases in-

spired a number of interesting developments in categorification. Roughly speaking, categorification

is the procedure of identifying structures in interesting categories such that applying a suitable

forgetful functor decodes (or decategorifies) the structure into a familiar set-based object, like an

algebra, or a module. For example, vector spaces categorify the natural numbers, and the decate-

gorification is accomplished by taking the dimension.

In particular, the positivity in the canonical basis strongly suggests that it is the decategorified

shadow from some interesting categorification; indeed, in the simply-laced case, the perverse sheaf

construction is exactly such a categorification. In particular, from this point of view, the canonical

basis essentially provides a Kazhdan-Lusztig theory as follows. The standard basis (i.e. PBW

basis) is the shadow of a class of standard objects, whereas the canonical (respectively, dual canon-

ical) basis is a shadow of some nice class, such as tilting or projective, of indecomposable objects

(respectively, simple objects). Such a realization allows us to use the transition matrix to compute

the decomposition multiplicities of each class in terms of the other. These ideas have been used, for

instance, to describe a Kazhdan-Lusztig theory for various Lie superalgebras; see [Br, CLW, BW].

An exciting program of categorification, which was kicked off in the seminal work of Chuang

and Rouquier [CR], is the program of “higher representation theory” (henceforth HRT), where

the goal is to categorify quantum groups (and other interesting algebras) and their representations

as 2-categories (with decategorification accomplished by taking the Grothendieck group of the

category). Such categorifications open the way towards constructing categorified knot invariants,

specifically knot homologies generalizing Khovanov homology, with the ultimate goal being a way

to produce 4-dimensional topological quantum field theories, as predicted by Crane and Frenkel

[CF]. Following the groundbreaking work of Khovanov and Lauda [KL] and Rouquier [Rou], much

headway has been made on these objectives; see for example [BK, EKL, EQ, VV, Web].

1.3. Quantum groups for Lie superalgebras. A natural next step is to generalize these results

to quantum groups associated to Lie superalgebras. Several papers in the interim have defined

and determined the properties of quantum superalgebras [BKM, Ge, KKT, Ya1]. Of particular

interest are the variety of constructions of crystal bases for representations that can be found in the

super setting, and the variation in the combinatorial models [BKK, Je, Kw1, Kw3, MZ]. There are

also some known examples of categorifications for quantum supergroups and their representations

[EL, KKO, Kh, KS, HW].

However, despite this interest, there has been little progress in generalizing the principal results

from the non-super setting. This is largely due to some properties of semisimple (or Kac-Moody)
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Lie algebras that fail to hold true in the super setting (see [Kac, ChWa] for details). Perhaps the

most wide-reaching difference is the existence of isotropic simple roots, which leads to, among other

things, more complicated Serre-type relations and non-Weyl-conjugate positive root systems.

While these complications make the study of these algebras more interesting, they also act

as obstructions to the usual methods of constructing canonical bases. In particular, the finite-

dimensional representations fail to be completely reducible for most simple finite-dimensional Lie

superalgebras, which makes the natural generalization of a crystal basis approach untenable in

many cases. There is also a lack of suitable geometric analogues for Lie superalgebras, and it seems

it will take more significant creative leaps to generalize Lusztig’s perverse sheaf construction to this

setting.

2. Previous work

2.1. Covering quantum groups. In joint work with Hill and Wang, the study of covering quan-

tum groups was initiated in [CHW1] (motivated by the categorification [HW] and the structural

results in [CW]). The new ingredients that differentiate covering quantum groups from the usual

notion of quantum group are the addition of a parameter π and new Cartan elements J = πh.

The parameter π is assumed to satisfy π2 = 1, and we use it to abstract signs coming from super

phenomena. For example, in the covering algebra setting, we rewrite a “super commutator” as

follows:

[x, y] = xy − (−1)p(x)p(y)yx  xy − πp(x)p(y)yx.

This parameter π is categorified by the parity change functor. One should interpret π as a parameter

linking the super and non-super quantum groups, so that we may specialize π = ±1 to recover the

usual half-quantum group or the half-quantum supergroup associated to a super Cartan datum.

In the process of constructing the integral form and canonical basis for the quantum group of

osp(1|2), we realized that a simple, but crucial, change in the definition of the quantum group allows

for a different collection of finite-dimensional highest weight modules to be considered (see [CW]).

These different definitions of the quantum group could be unified by adding a new generator J ;

speaking heuristically, if we use the familiar notation K = qh where h is the Cartan generator of

osp(1|2), then J = πh. This lead to the following general definition.

A covering quantum group associated to an anisotropic super Cartan datum (I, ·) (see [CHW1,

§1.1]) is the Q(q, π)-algebra with generators Ei, Fi, Ki, and Ji satisfying certain relations (see

[CHW1, §2.1]). Most of these relations are covering analogues of the relations for quantum super-

groups, but the most informative relation is

EiFj − πp(i)p(j)FjEi = δij
JiKi −K−1i
πiqi − q−1i

.

There is a natural definition of quantum integers for covering quantum groups given by

[n] =
(πq)n − q−n

πq − q−1
∈ Z≥0[q, q−1, π].

Then we may define divided powers in terms of these quantum integers, and use these to define an

integral form of the covering quantum group. When the Cartan datum is “bar-consistent”, there

is a bar-involution on the covering quantum group which satisfies

q = πq−1.
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While unconventional, this bar-involution has a categorical interpretation (see [HW]), fixes the

quantum integers, and restricts to an involution on the integral form.

In the papers [CHW1, CHW2, C1, CH], we carefully studied covering quantum groups and their

representation theories. The results we obtained are “lifts” of the corresponding classical results in

[Lu3, Part I] and [K]; to wit, it is shown that the covering quantum group has a completely reducible

representation theory with integrable simple modules V (λ) indexed by all dominant weights. (By

comparison, the quantum supergroups appearing in the literature previously had to restrict the set

of dominant weights to satisfy certain evenness conditions unless the quantum group was defined

over the field C(q). This reflects the properties of integrable modules of Kac-Moody superalgebras.)

These integrable simple modules, as well as half of the covering quantum group, admit crystal

structures which can be globalized (in the sense of Kashiwara). This allows us to prove the following

theorem, which is an analogue of the canonical basis results in [Lu1, K].

Theorem 1 ([CHW2]). The covering quantum group U associated to an anisotropic bar-compatible

super Cartan datum admits a canonical basis B for U− which descends to a basis for the integrable

irreducible highest-weight modules V (λ) for dominant weights λ.

One feature of this construction is that it is a generalization of the construction of canonical

bases for quantum groups. In particular, if b is a canonical basis element of the covering quantum

group, then setting π = 1 yields a canonial basis element of the quantum group.

In [C1], I systematically develop the structure of the modified form U̇ of the covering quantum

group (in the sense of Lusztig [Lu3, Chapter 23]). This algebra is, in some sense, the limit as λ→∞
of the modules V (−λ) ⊗ V (λ), where V (−λ) is a lowest-weight irreducible module. These tensor

product modules admit a bar-involution induced by the quasi-R-matrix of U, and by a standard

lemma due to Lusztig, they also have a canonical basis induced by the bar involution and the

canonical bases on the tensor factors. In the limit, these bases stabilize and induce a basis on the

modified form.

Theorem 2 ([C1]). The modified form U̇ of the covering quantum group U associated to an

anisotropic bar-compatible super Cartan datum admits a canonical basis Ḃ which is compatible

with the canonical bases on V (−λ) ⊗ V (λ). Moreover, U̇ admits a bilinear form for which Ḃ is

signed-almost-orthonormal.

It is expected that the bilinear form and canonical basis should help determine a categorification

for the modified covering quantum group. Indeed, in rank 1, this has been done by Ellis and Lauda

[EL], and a higher-rank generalization will be done in a forthcoming paper by Brundan and Ellis;

cf. [BE]. These categorifications are conjectured to provide a way to construct (generalizations

of) the “odd Khovanov homology” of Ozsváth, Rasmussen, and Szabó [ORS]: a knot homology

which also categorifies the Jones polynomial, which agrees with Khovanov homology with Z/2Z
coefficients, but is a distinct link invariant in general.

One consequence of this conjecture would be that the colored quantum knot polynomials asso-

ciated to covering quantum osp(1|2n) should be “the same” as those associated to so(1 + 2n). In

a recent paper [C2], I show that the representations of covering quantum osp(1|2n) can be used

to generate knot invariants, in the manner of Reshetikhin and Turaev [RT]. This is accomplished

by explicitly describing the maps associated to cups, caps, and crossings, and showing that these

maps induce a functor from the category of tangles to the category of U-modules.

On the other hand, in earlier joint work with Fan, Li, and Wang [CFLW], a family of maps

X called twistors were defined on several versions of the covering quantum group. These maps
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essentially relate the π = ±1 specializations of a complexified version of the covering quantum

group. Indeed, in the simplest version, we can view X as a linear monomorphism

X : U−|π=±1 → Q(q,
√
−1)⊗Q(q) U−|π=∓1

which twists the multiplication on U− and yet preserves the canonical basis up to a scalar. In [C1],

it is shown that this family induces morphisms on the level of simple modules and some tensor

products.

In [C2], I expanded on this framework to show that the twistors essentially describes a functor

between the π = ±1 module categories, which monoidal modulo a weight-wise twisting operator.

In particular, this functor almost commutes with the cups, caps, and crossings, hence translates

between the π = −1 and π = 1 versions of the tangle operators. This leads to the following result.

Theorem 3 ([C2]). Let t ∈ C such that t2 = −1, and let K be a knot. Let JλK(q) be the covering

knot invariant of K colored by the dominant weight λ. Then JλK(q)|π=−1 = t?JλK(qt−1)|π=1 for

some integer ? depending on K and λ.

2.2. Quantum enveloping superalgebras of basic type. The basic type Lie superalgebras are

those which are closest, in a certain sense, to classical simple Lie algebras. Indeed, the quintessential

basic type Lie superalgebras are gl(m|n), the prototypical Lie superalgebra of endomorphisms of

an (m|n)-dimensional superspace; and osp(m|2n), the subalgebra of gl(m|2n) preserving an (even)

super-symmetric bilinear form. (See [Kac] for the classification of simple Lie superalgebras, and

[ChWa] for an expanded discussion of these algebras and their properties.)

One defect of the theory of quantum covering groups is that it cannot address any of the Lie

superalgebras of basic type other than osp(1|2n). The other basic type algebras have several

complicating factors in their structures which differentiate them from their non-super counterparts:

the existence of isotropic simple roots, the corresponding small size of the Weyl group, a non-

semisimple representation theory (in general). In all, these factors make constructing canonical

bases a delicate and non-trivial endeavor.

One promising direction is pursued in [CHW3], where we adopt the quantum shuffle algebra

approach used by Leclerc [Lec], Rosso [Ro], and others. We embed the quantum supergroup

associated to an arbitrary choice of simple system into a q-shuffle superalgebra, and develop the

combinatorics of words to construct several distinquished bases, including a monomial basis and a

PBW basis, for the quantum supergroup. Using this approach, we demonstrate the following.

Theorem 4 ([CHW3]). Let g be the Lie superalgebra gl(m|1) or osp(2|2n). Let U be the quantum

group associated to the standard simple system of g. Then U− admits a pseudo-canonical basis

which is equal to a PBW basis modulo q, and which is characterized by almost orthogonality under

a bilinear form.

One defect of the shuffle approach is that different PBW bases may produce different canonical

bases in general, as a bar-invariant almost-orthogonal basis is only unique up to sign. In some cases,

a signed canonical basis is the best one can hope for when in the super setting (since, for instance,

any datum with two odd anti-commuting generators would necessarily have a signed basis), but

nevertheless there is reason to believe this should not be the case for these examples.

In the case of gl(m|1), I verified that the pseudo-canonical basis is in fact canonical. This is done

in two different ways. First, I build on the crystal basis theory developed by Benkart, Kang, and

Kashiwara [BKK] and Kwon [Kw2] to deduce the existence of a canonical basis of gl(m|1) which

is compatible with the standard PBW basis. Second, I develop an analogue of Lusztig’s braid



Sean Ian Clark Research Statement 6

operators. In the super setting, due to the fact that isotropic roots have no associated reflection

in the Weyl group, these are no longer automorphisms of U. Instead, we must replace the Weyl

group with a Weyl groupoid obtained by adding in “formal odd reflections” due to Serganova [Ser].

(See also [HY] for a discussion of properties of general Coxeter groupoids.) As a consequence, the

odd braid operators instead define isomorphisms between presentations of the quantum group with

different choices of generalized Cartan matrices.

Theorem 5 ([C3]). Let U be the quantum group associated to the standard simple system of gl(m|1).

The pseudo-canonical basis B of U− is equal to any PBW basis modulo q, hence is canonical. More-

over, B induces a compatible basis on the highest-weight Kac module K(λ), and if λ is polynomial,

a canonical basis on the simple quotient V (λ). Finally, in the case m = 3, the canonical basis can

be explicitly described by three families of elements. (See [C3, Theorem 5.2].)

3. Future Directions

Now I will list some of the future directions and projects I plan to pursue in the near future,

followed by a brief discussion.

Project 1. Find a suitable formulation for canonical bases of U−q (gl(m|n)) for m,n ≥ 2.

The Lie superalgebra gl(m|n) is the fundamental example of a Lie superalgebra, and even has an

established theory of crystal bases given in [BKK], yet it remains one of the most mysterious cases

in terms of constructing canonical bases. This is because the naive generalization of the definition

of canonical bases to gl(m|n) must fail, largely due to the following fact. Let Uq(gl(m|n))ev be

the subalgebra of Uq(gl(m|n)) (defined with respect to the standard simple roots) generated by

Ei, Fi,Ki where αi is an even root. Then we have an isomorphism

Uq(gl(m|n))ev = Uq(gl(m|0))⊗Uq(gl(0|n)) ∼= Uq(gl(m))⊗Uq−1(gl(n)).

The difference of the quantum parameter being q or q−1 (which one might call the chirality in q)

is not cosmetic and poses a significant obstruction to allowing canonical bases as defined above.

Indeed, any reasonable definition of a canonical basis on U−q (gl(m|n)) should be compatible with

the canonical bases of the subalgebras U−q (gl(m)) and U−
q−1(gl(n)). However, this would require

the transition matrix from a PBW basis to be chiral: Z[q]-unitriangular on the gl(m) part and

Z[q−1]-unitriangular on the gl(n) part. (See also the definition of Kashiwara operators in [BKK]

for an analogue of this phenomenon on the level of crystals.) It is not clear how to interpolate

between these two requirements to get a condition on all of U−q (gl(m|n)), and if we do force both

parts to be either Z[q] or Z[q−1]-triangular, then the basis necessarily changes depending on the

choice of PBW basis. (See [C3, Example 2.7] for an explicit example of this phenomenon.)

Despite this setback, there is reason to believe that an analogue of canonical basis exists if we

can find the correct conditions. Indeed, let U−q (gl(1|m|1)) be the half-quantum group associated to

the non-standard system of simple roots for gl(m|2) which has exactly two disconnected isotropic

roots. In other words, this would be the half-quantum group associated to the Dynkin diagram

. . .

where the crossed nodes indicate odd isotropic roots, and all the remaining roots are non-isotropic

and even. I can show that U−q (gl(1|2|1)) (and more generally, U−q (gl(1|m|1))) does have a (signed)

canonical basis satisfying the naive definition. (See [C3, Section 5.3] for the m = 1 case.) These
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canonical bases also have crystal structures; see the following figure for a truncated picture of the

crystal of U−q (gl(1|2|1)).

H
?

??

?

??

Figure 1. This is a conjectural picture of the crystal of U−q (gl(1|2|1)); the red

and blue arrows indicate the isotropic operators, and the diamonds indicate a sign

change due to commuting odd operators. The starred arrows indicate some apparent

fractal-like repetition of the tower-like structures at the bottom. While conjectural

for the whole crystal, this truncated picture has been verified by a Python script.

In this case, the chirality of q essentially vanishes, which allows the naive definition to work. It

is not obvious how to use this construction to build a canonical basis for the standard root system

case, but it opens the door to apply several other tools. Indeed, we can try to extend this basis

to the whole quantum group by taking the modified form U̇. This would give us a more nuanced

look at the basis, and potentially use braid operators to concretely produce a basis for the standard

half-quantum group. Most importantly, producing a canonical basis for standard gl(2|2) would give

us insight into the correct definition of canonical bases for Lie superalgebras.

Another way to gain insight on this project is by computing examples. Computation in U−q (gl(2|2))

can be done by computer, and in fact I have already written some code for computing PBW bases

and manipulating them. (Indeed, this is how Figure 1 above was originally produced.) Playing

with these computations and looking for patterns could provide valuable insight into the general

problem, and would be suitable project for an advanced undergraduate. Not only would it provide

motivation to learn about the topics surrounding quantum groups and Lie (super)algebras, but it

would also demonstrate the power of programming and experimental computations in mathematical

research.

Project 2. Use the methods from [C3] to construct crystal and canonical bases for other basic type

Lie superalgebras, and their modules.

While the methods in [C3] would not lend themselves to a general theory of canonical bases for

basic type Lie superalgebras, there are some special cases where a similar strategy would work.
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Essentially, the key is to look for simple systems which avoid the chirality phenomenon mentioned

in Project 1. For example, the standard root systems of osp(2|2n) and osp(2m|2) satisfy this

constraint, and I have checked that U− for these algebras do indeed admit canonical bases.

However, novel ideas will be needed for constructing canonical bases of modules in these examples

and others. In the ortho-symplectic families, one possible approach would be to use the work of

Kwon [Kw3]. In loc. cit., Kwon uses super duality to produce semisimple tensor categories of

modules for the quantum groups of ortho-symplectic Lie superalgebras, and demonstrated that

these category admit crystal bases. While there are certainly many details to be checked, this

could provide a suitable replacement for the results of [BKK] in this setting, and provide a crystal

basis approach to the canonical bases.

One interesting loose end of the work in [C3] is that there seems to be a high amount of com-

patibility between the canonical basis and atypical modules, at least in the low-rank cases. For

instance, in the case m = 2, the atypical modules do carry a crystal structure after rescaling the

isotropic raising operator. For m = 3, several families of atypical modules admit a natural lattice

L(λ) containing the highest weight vector vλ and such that B(λ) = {b ∈ B | bvλ /∈ qL(λ)} maps

bijectively to a basis of V (λ).
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Figure 2. The crystal associated to the Uq(gl(3|1))-modules K(λ), the Kac mod-

ule of atypical highest weight λ = ε1 − 3ε4. Here, (ik11 i
k2
2 . . . iktt ) is shorthand for

F
(k1)
i1

. . . F
(kt)
it

1λ. The boxed elements are those basis elements which are zero mod-

ulo q in the simple quotient V (λ)

This strongly suggests that even in the atypical case, there is some interesting crystal structure

to be determined. However, in general, the Kashiwara operators as defined in [C3] (based on

[BKK, Kw2]) are not correct for defining such a crystal, as evidenced in the m = 2 case. This

leads to two natural questions: can we find a combinatorial model for gl(m|1) crystals of atypical

weights, and can we realize this model through suitably defined Kashiwara operators to recover the

compatibility observed in [C3]?

While these are interesting in their own right, understanding these questions could offer insight

into realizing crystals of modules of the quantum groups gl(m|n) associated to non-standard choices

of simple roots. On the combinatorial level, such crystals were studied by Kwon [Kw1]; however,

they are disconnected in general, which makes them significantly more challenging to work with.

However, the half-quantum group does admit a canonical basis with a natural connected crystal

structure; see for example Figure 1 above. The problem of finding a compatible crystal structure

on modules seems related to finding a suitable crystal structure on atypical modules.
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One way to gain some traction on this question would be to produce more examples and try

to isolate what the underlying combinatorial crystal should be modeled by. This is a project that

could be suitable for an advanced undergraduate to play with, and would provide a good motivation

for learning more about crystals and their underlying combinatorial models, like Young diagrams

and tableaux.

Project 3. Unify the three constructions of the canonical basis of Uq(osp(1|2n)).

At this point, there are three different ways to construct the canonical bases:

• crystal bases [CHW2];

• through PBW bases using the quantum shuffle algebra [CHW3];

• through PBW bases using braid operators [CH].

It is natural, but not automatic, that these bases should all agree. It should be possible to prove

this using analogues of the standard arguments from the non-super case, and in particular would

be a suitable project for an advanced undergraduate to be introduced to quantum groups and the

ways to construct their canonical bases.

Project 4. Motivated by the categorification [KS], find similar categorifications for other basic type

Lie superalgebras with canonical bases.

In their paper [KS], Khovanov and Sussan develop a broad theory to use in categorifying one

half of standard quantum gl(m|1). The key idea is to develop a diagrammatic algebra in the spirit

of KLR algebras, but with a dg-algebra structure motivated by an earlier m = 2 categorification

by Khovanov. These are examples of negative dg gradual algebras, which are certain infinite-

dimensional bi-graded dg algebras defined in loc. cit. which have a similar representation theory

to finite-dimensional algebras.

Given this framework, there are several natural directions in which their work can be extended.

One natural extension is to attempt to categorify other half-quantum groups of basic type Lie

superalgebras, both for the standard and non-standard choices of root systems. Depending on

the precise datum, this would involve modifying the definition of the diagrammatic algebra in loc.

cit. in such a way that it remains a negative dg gradual algebra (or at least, close enough that it

still has similar nice properties). Then similar arguments should allow one to derive the desired

categorification result.

Another natural direction is to deduce categorifications of simple modules of gl(m|1). For Kac

modules and polynomial modules, this should be possible in an entirely analogous way to the non-

super case: take appropriate cyclotomic quotients of the diagrammatic algebra. For the remaining

atypical modules, it is a more subtle question: in the case λ is atypical, the kernel of the map

U− → V (λ) generally is not generated by the elements F
〈hi,λ〉+1
i . This case is somewhat less

immediately interesting, however.

Yet another interesting direction is to try to categorify the modified form of the quantum group.

This would be a much more non-trivial endeavor, requiring not only to extend the diagrammatics

dramatically, as in part 3 of [KL] (see also [EL]), but also for the theory of categorical actions to

be well-understood. In the short term, it would be to answer these questions for the small rank

cases of gl(1|1) and gl(2|1). Indeed, in these cases there are already some detailed categorifications

using geometry [Tia], topology [EPV], and category O [Sar].

Project 5. Study the structure and representation theory of (covering) quantum supergroups at a

root of unity.
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An important facet of quantum groups is specialization of the parameter q to a root of unity.

For the quantum group associated to a semisimple Lie algebra, Lusztig [Lu2] demonstrated that

specialization at a root of unity “approximates” the modular representation theory of the Lie

algebra and corresponding algebraic group. Moreover, there is an algebra homomorphism called the

quantum Frobenius homomorphism which generalizes (in a suitable sense) the classical Frobenius

homomorphism (cf. [Lu3, Chapter 35]).

Given the many parallels already developed between quantum groups and covering quantum

groups, we expect that the results in [Lu3, Part V] will have analogues in the covering algebra

setting. In particular, I plan to construct an analogue of the quantum Frobenius map and a small

covering quantum group. This should provide a bridge between the modular representation theory

of Kac-Moody Lie algebras and their super counterparts. This could be particularly interesting in

the context of categorifying quantum groups at a root of unity, as in [EQ], as the twistor isomor-

phisms of [CFLW] would provide a way to twist the specialization of the parameter. Moreover,

given the results in [C2], one could ask what, if any, 3-manifold invariants arise from Uq(osp(1|2n))

for q a root of unity. Presumably, they would be related to those from Ut−1q(so(1 + 2n)).

In a similar vein, we may study quantum supergroups of basic type at roots of unity as well.

We expect that a version of quantum Frobenious maps and small quantum groups would certainly

exist in this setting. One parallel with the classical theory that would be interesting to explore is

whether the representations of the quantum supergroup at roots of unity approximates modular

representations of Lie superalgebras. An important problem in this setting would be formulating

an analogue of the Lusztig conjecture, at least for large primes p.

Lusztig’s conjecture is a modular version of the famous Kazhdan-Lusztig conjecture, and heuris-

tically these conjectures have the same content: characters of standard modules and simple modules

can be expressed in terms of one another with coefficients equal to Kazhdan-Lusztig polynomials

evaluated at 1. The crucial observation in this case is that the formal similarity behind quantum

groups at roots of unity and modular representation theory can be used to prove Lusztig’s conjecture

for modular representations by proving the analogous statement for the quantum group, at least

when the characteristic is sufficiently large. This pulls the problem back to being a characteristic

zero problem, which makes it somewhat more amenable to direct attack.

To take a similar approach for Lie superalgebras, we would first expect there to be a characteristic

zero version: that is, a Kazhdan-Lusztig theory for the Lie superalgebra. Such a theory was first

formulated by Brundan [Br] for the Lie superalgebra gl(m|n). This Brundan-Kazhdan-Lusztig

conjecture was proved recently by Cheng, Lam, and Wang [CLW] using Brundan’s ideas in concert

with dualities for the general linear Lie superalgebra. (Another proof was given by Brundan,

Webster, and Losev [BLW] using the framework of tensor product categorifications developed by

Webster and Losev.) More recently, Bao and Wang [BW] have used quantum symmetric pairs to

extend and prove the BKL conjecture for osp(2m + 1|2n), which Bao subsequently extended to

osp(2m|2n) [Ba].

Project 6. Categorify the tensor product modules of covering quantum sl2 (and more generally,

quantum covering groups) à la Webster.

One of the more mysterious developments in homological knot invariants was the discovery of

odd Khovanov homology due to Ozsváth, Rasmussen, and Szabó [ORS]. This is a knot homology

whose Euler characteristic yields the Jones polynomial of the knot, yet is a distinct knot invariant

from Khovanov homology. The adjective “odd” comes from the fact that odd Khovanov homology

and Khovanov homology agree when taken with Z/2Z coefficients.
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One would like a conceptual explanation of the existence of this odd Khovanov homology, and,

if possible, a machine for producing more examples of “odd knot homologies” categorifying other

quantum knot invariants. One way to approach this problem is through HRT. Indeed, just as

quantum knot invariants can be constructed through the representation theory of quantum groups

via Reshetikhin and Turaev’s procedure [RT], Webster [Web] has demonstrated that that this

mechanism can be categorified to produce knot homologies through categorified representations of

the quantum group. In particular, Webster’s work finishes the diagram in Figure 3 below.

To explain odd Khovanov homology, we wish to produce a parallel diagram using a suitable choice

of (categorified) quantum groups in the right column. It has been conjectured that Lie superalgebras

(and in particular, covering quantum group of osp(1|2)) would provide the appropriate “odd”

analogue. Heuristic evidence for this has been given by Mikhaylov and Witten [MW], and [C2]

provides the decategorified link between these quantum covering groups and the usual quantum

link invariants of type B. Thus we expect the diagram in Figure 4 to have an analogue of Webster’s

work filling in the dotted arrow.

KH

Jones

U̇q(sl(2))

Uq(sl(2))

Decat.Decat.

[Web]

[RT]

Figure 3

oKH

Jones

U̇q,π(osp(1|2))

Uq,π(osp(1|2))

Decat.Decat.

?

[RT, C2]

Figure 4

In other words, the work that remains is to produce the HRT machinery. There has been

much activity in this direction. Indeed, the covering quantum group has been categorified in rank

one by Ellis and Lauda [EL], and in general in forthcoming work of Brundan and Ellis [BE].

Moreover, the integrable modules have already been categorified in rank one by [EKL] and the

general case by Kang, Kashiwara and Oh [KKO]. However, there are many aspects of the framework

of supercategorifications that still need to be developed; in particular, it still remains to find a

generalization of the tensor product categorifications of [LW] in the supercategorification setting,

and then there is a substantial amount of machinery in [Web] that needs to be generalized to this

new setting. As such, this will be a much longer-term project, likely involving collaboration with a

number of other authors to complete.
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