Curriculum Vitae SEAN IAN CLARK October 28, 2016

PERSONAL INFORMATION

Citizenship: USA	
Email: se.clark@neu.edu	
Phone: 703-216-7963	
Web: http://www.northeastern.edu/sclark/	

Mailing address: 567 Lake Hall Department of Mathematics Northeastern University Boston, MA 02115

Employment

Jul. 2014 - Present	Zelevinsky Research Instructor, Northeastern University
Sep. 2015 - Aug. 2016	Postdoctoral Fellow , Max Planck Institute for Mathematics
As a visitor	
Jan. 2013 - May 2013	Institute of Mathematics, Academia Sinica
Education	
Sep. 2009 - May 2014	Ph.D., Mathematics, University of Virginia Advisor: Weiqiang Wang Thesis: "Quantum Supergroups and Canonical Bases"
Sep. 2005 - May 2009	B.S., Mathematics, College of William and Mary Magna Cum Laude

Research interests

My primary research interests lie in representation theory, and its connections with algebraic combinatorics, topology, geometry, and categorification. Specifically, I am most interested in the representation theory of quantum algebras, such as the quantized enveloping Lie (super)algebras, (q-)Schur (super)algebras, (quiver) Hecke algebras. I am also interested in diagrammatic algebras and categorification; the combinatorics of Young tableaux and crystals; and (quantum) knot invariants.

SELECTED PUBLICATIONS

1.	Canonical basis for quantum osp(1 2), joint work with W. Wang, Lett. Math. Phys. 103 (2013), pp. 207-231. arXiv:1204.3940
2.	Quantum supergroups I. Foundations, joint work with D. Hill and W. Wang, Transform. Groups 18 (2013), pp. 1019-1053. arXiv:1301.1665
3.	Quantum supergroups II. Canonical basis, joint work with D. Hill and W. Wang, Represent. Theory 18 (2014), pp. 278-309. arXiv:1304.7837
4.	Quantum supergroups III. Twistors, joint work with Z. Fan, Y. Li, and W. Wang, Comm. Math. Phys. 332 (2014), pp. 415-436. arXiv:1307.7056

5. *Quantum supergroups IV. The modified form*, Math. Zeit. **278** (2014), pp. 493-528. arXiv:1312.4855

Combinatorics of super tableaux and a branching rule for the general linear Lie superalgebra, joint work with Y.-N. Peng and S. Thamrongpairoj,

- joint work with Y.-N. Peng and S. Thamrongpairoj, Linear and Multilinear Algebra 64 (2015), pp. 274-282. arXiv:1301.0174
- Quantum supergroups V. Braid group action,
 joint work with D. Hill,
 Comm. Math. Phys. 344 (2016), pp.25-65. arXiv:1409.0448

Quantum shuffles and quantum supergroups of basic type,

 joint work with D. Hill and W. Wang, Quantum Topology 7 (2016), pp. 553–638. arXiv:1310.7523

Preprints

- 9. Quantum $\mathfrak{osp}(1|2n)$ knot invariants are the same as quantum $\mathfrak{so}(2n+1)$ knot invariants, submitted. arXiv:1509.03533
- 10. Canonical bases for the quantum enveloping algebra of $\mathfrak{gl}(m|1)$ and its modules, submitted. arXiv:1605.04266

GRANTS AND AWARDS

May 2015	AMS-Simons Travel Grant
May 2009	William and Mary Prize in Mathematics

Invited conference talks

June 2016	Quantum enveloping $\mathfrak{gl}(m 1)$ and canonical bases 2nd US-Mexico Conference on Representation theory, Categorification, and Noncommutative Algebra at University of Southern California
May 2016	Quantum enveloping $\mathfrak{gl}(m 1)$ and canonical bases Algebraic Groups, Quantum Groups and Geometry at University of Virginia
Dec. 2013	Canonical bases and quantum shuffle superalgebras of basic type Taipei Conference in Representation Theory IV at Academia Sinica, Taiwan
Nov. 2013	A canonical basis for covering quantum groups AMS Western Fall 2013 Sectional Meeting
May 2013	Kac-Moody quantum supergroups and global crystal bases Workshop on Super Representation Theory at Academia Sinica, Taiwan
Oct. 2012	Canonical basis for quantum Kac-Moody Superalgebras AMS Southeastern Fall 2012 Sectional Meeting
Sep. 2012	Towards canonical bases for quantum Kac-Moody Superalgebras AMS Eastern Fall 2012 Sectional Meeting
July 2008	Linear preservers of higher rank numerical ranges Workshop on Numerical Ranges and Numerical Radii at William and Mary

Seminar talks

Oct. 2016	Canonical bases for basic type Lie superalgebras through braid operators Representation Theory Seminar, Northeastern University
Oct. 2015	Do Super Cats Make Odd Knots? New Visitor Oberseminar, Max Planck Institute for Mathematics
Feb. 2015	Quantum shuffles and Lie superalgebras of basic type Lie Group Seminar, MIT
Jan. 2015	Quantum Superalgebras, Canonical Bases, and Categorifications Representation Theory Seminar, Northeastern University
May 2013	Hall Algebras and the Jordan Quiver Algebra Seminar, Institute of Mathematics, Academia Sinica
Mar. 2013	Canonical basis of quantum groups and quantum shuffles Algebra Seminar, Institute of Mathematics, Academia Sinica
Sep. 2012	Toward canonical bases for quantum Kac-Moody superalgebras Graduate Seminar, University of Virginia
Apr. 2012	Canonical bases for quantized $\mathfrak{osp}(1 2)$ Algebra Seminar, University of Virginia

SERVICE

Referee for CIMP, J. Reine Angew. Math., IMRN, Journal of Algebraic Combinatorics, JPAA, Representation Theory, Selecta Mathematica, Transactions of the AMS

Reviewer for Mathematical Reviews

Co-organized "Special Session on Quantum Algebras, Representations, and Categorifications" for the 2015 Spring Eastern Sectional Meeting in Washington DC

Mentoring

Co-supervised an undergraduate student S. Thamrongpairoj at UVA (now a graduate student at UC San Diego) in a research project, culminating in a joint paper 6 listed above.

TEACHING EXPERIENCE

Postdoctoral Teaching Associate at Northeastern University:

Instructor of record: responsible for writing and giving lectures, assigning homework, writing and grading exams, assigning letter grades for course. (* indicates additional responsibilities as course coordinator) (Course descriptions: http://net4.ccs.neu.edu/home/rasala/bannercourse/default.aspx#!MATH)

MATH 1365:	: Introduction to Mathematical Reasoning [*] (64 s	tudents between 2 sections) Fall 2016
MATH 3527:	Number Theory (26 students, 1 section)	Spring 2015

MATH 1342: Calculus 2 for Scientists and Engineers (129 students between 2 sections) Fall 2014

Graduate Instructor at University of Virginia:

Instructor of record: responsible for writing and giving lectures, assigning homework, writing and grading exams, assigning letter grades for course.

(Course descriptions: http://math.virginia.edu/courses)

Calculus II (20-30 students per semester)

Two semesters

Calculus I (20-30 students per semester)	Three semesters
Financial Mathematics (35 students)	One semester
Applied Calculus I (30-40 students per semester)	Two semesters

Graduate Teaching Assistant at UVA:

Responsible for running an hour-long discussion section, as well as writing, administering, and grading weekly quizzes.

(Course descriptions: http://math.virginia.edu/courses)

Calculus III (teaching assistant, 2 sections)

Two semesters