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Hasson CJ, Shen T, Sternad D. Energy margins in dynamic
object manipulation. J Neurophysiol 108: 1349-1365, 2012. First
published May 16, 2012; doi:10.1152/jn.00019.2012.—Many tasks
require humans to manipulate dynamically complex objects and
maintain appropriate safety margins, such as placing a cup of coffee
on a coaster without spilling. This study examined how humans learn
such safety margins and how they are shaped by task constraints and
changing variability with improved skill. Eighteen subjects used a
manipulandum to transport a shallow virtual cup containing a ball to
a target without losing the ball. Half were to complete the cup transit
in a comfortable target time of 2 s (a redundant task with infinitely
many equivalent solutions), and the other half in minimum time
(a nonredundant task with one explicit cost to optimize). The safety
margin was defined as the ball energy relative to escape, i.e., as an
energy margin. The first hypothesis, that subjects converge to a single
strategy in the minimum-time task but choose different strategies in
the less constrained target-time task, was not supported. Both groups
developed individualized strategies with practice. The second hypoth-
esis, that subjects decrease safety margins in the minimum-time task
but increase them in the target-time task, was supported. The third
hypothesis, that in both tasks subjects modulate energy margins
according to their execution variability, was partially supported. In the
target-time group, changes in energy margins correlated positively
with changes in execution variability; in the minimum-time group,
such a relation was observed only at the end of practice, not across
practice. These results show that when learning a redundant object
manipulation task, most subjects increase their safety margins and
shape their movement strategies in accordance with their changing
variability.

motor learning; motor control; safety margin; complex dynamics;
energetic constraints

MOST EXPERIMENTAL PARADIGMS in computational neuroscience
have used highly constrained tasks such as rapidly reaching to
a point target (Bhushan and Shadmehr 1999; Meyer et al. 1988;
Schmidt et al. 1979). The underlying rationale is that insight
can be gained into how the brain controls movement by
pushing the sensorimotor control system to its limit in terms of
spatial and/or temporal accuracy. Although this is a useful
approach, tasks performed in everyday life rarely match this
scenario, as is evident when placing a cup of coffee onto a
table. This action is not performed rapidly, nor is the accuracy
of cup placement critical. What matters is that the cup reaches
the table without coffee being spilled. This task is redundant,
with an infinite number of movement solutions. This redun-
dancy raises many questions: Are all movement strategies or
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“solutions” equally valid? If not, what preferences do humans
display, or what “cost functions” do they develop with prac-
tice? How consistently do individuals choose one or a subset of
solutions? This study addresses these questions by introducing
a new experimental task that emulates transporting a cup of
coffee.

When redundancy is discussed, it is usually with respect to
the overdetermined nature of the human musculoskeletal sys-
tem (Bernstein 1967), e.g., most joints are crossed by more
muscles than needed to actuate the joint’s degrees of freedom
(however, see Loeb 2000). Similarly, a task can be redundant
if it affords multiple ways to be accomplished. If the goal is to
transport an object in an unspecified movement time or to an
approximate location, an infinite number of equally valid
solutions are available. In contrast, when transporting an object
as fast as possible, redundancy is eliminated due to the opti-
mization of one explicit performance criterion, assuming fixed
constraints on actuation. Here we refer to optimality at the task
level, i.e., as a “goal post” that humans strive to obtain.
Although studies have investigated redundant tasks, such as
pointing to a line (Berret et al. 2011; Diedrichsen et al. 2010),
a plane (Schlerf and Ivry 2011), or throwing a ball at a target
(Cohen and Sternad 2009; Sternad et al. 2011), they have
focused on performance in terms of the end-state goal with a
defined end-state error. In tasks such as transporting a cup of
coffee, performance is constrained along the entire movement
trajectory, because a safety margin must be maintained to
prevent spilling coffee.

The modulation of continuous safety margins has been
studied in relation to picking up, transporting, or oscillating
rigid objects, where humans have to maintain a grip force
exceeding the slipping threshold to prevent dropping the object
(Danion and Sarlegna 2007; Flanagan and Lolley 2001; Forss-
berg et al. 1991; Johansson and Cole 1994; Sarlegna et al.
2010). For rigid objects there is a straightforward relation
between object acceleration and the load force that must be
overcome to avoid slipping. Consequently, humans quickly
adapt their grip force in response to a novel load within a single
movement (Johansson and Westling 1988). However, an object
like a cup filled with coffee has more complex dynamics, and
the risk of spilling requires a different and less intuitive safety
margin due to the moving liquid. In addition, the control of the
safety margin is coupled to the object motion in a nonlinear
fashion, i.e., the safety margin cannot be controlled indepen-
dently from object kinematics. It is safe to assume that this
more complicated safety margin will require more than one
movement to learn. How humans establish safety margins
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while at the same time trying to satisfy end-state goals in a
redundant task is an open question.

A key factor that may modulate how individuals discover
and use safety margins in a redundant task is motor variability,
which arises in part due to noise in the neuromuscular system
(Faisal et al. 2008). Previous studies have shown that humans
are sensitive to the effects of variability and seek solutions that
are tolerant to error and noise (Chu WT, Sternad D, Sanger TD,
unpublished observations; Harris and Wolpert 1998; Sternad
et al. 2011). This predicts that individuals with greater vari-
ability will utilize larger safety margins, since task failure may
result if movement errors or unforeseen perturbations occur.
One way to test this prediction is to compare individuals’
choices of safety margin with their variability: those with
greater variability should choose larger safety margins, i.e.,
there should be a correlation. An even stronger test is to
examine changes across practice within an individual and
assess how safety margins are modulated with practice. If
humans are sensitive to their variability, then decreases in
trial-to-trial variability should be accompanied by smaller in-
creases in safety margins, and vice versa.

The present study developed an experimental paradigm for a
complex task that presents redundancy and has continuous
safety margin constraints, similar to the real-world task of
transporting a cup of coffee. These features were reproduced
by having participants transport a virtual ball in a cup to a
spatial target without letting the ball escape from the cup. To
investigate the effects of task redundancy on performance, two
different task conditions were compared. In a redundant ver-
sion of the task, subjects were asked to transport the ball and
cup in a comfortable time of 2 s without letting the ball escape.
On the basis of these instructions, there is redundancy, because
subjects could use a variety of movement strategies to place the
cup onto the target location. In addition, the constraint of not
losing the ball is not a discrete criterion, but rather an inequal-
ity. To create a nonredundant task for comparison, a second
group of subjects was instructed to complete the cup transit in
minimum time, a task goal that has a single theoretical opti-
mum given physiological constraints on action.

The first aim was to investigate how task redundancy affects
performance variability. We expected that, as is typical in
motor learning, subjects in both groups would improve end-
state performance while also decreasing trial-to-trial variabil-
ity. However, we anticipated that subjects in the target-time
group would choose different spatiotemporal solutions due to
task redundancy, whereas those in the minimum-time group
would converge to the same strategy (hypothesis I).

The second aim was to investigate how manipulation of task
redundancy affects safety margins. As detailed below, the
safety margin was quantified in terms of ball energy relative to
escape, i.e., as an energy margin. We expected that, with
practice, subjects performing the nonredundant minimum-time
task would shift from a conservative strategy to one that was
more risky. Specifically, safety margins should decrease as
subjects become familiar with the task dynamics and make
faster movements (hypothesis 2a). In contrast, in the target-
time task, subjects should take advantage of redundancy and
seek strategies with greater safety margins (hypothesis 2b).

The third aim was to investigate the relation between vari-
ability and safety margins. If subjects are sensitive to their own
variability and seek error-tolerant performance, then safety
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margins should change in concert with changes in variability.
Subjects who exhibit large decreases in variability should be
under less pressure to seek safe movement strategies compared
with those exhibiting only marginal decreases in variability. If
this is a general tendency, then there should be a positive
correlation between safety margins and variability at the end of
practice in both redundant and nonredundant tasks (hypothesis
3a). A more individualized expectation is that within each
individual, we should see that safety margins are adapted to
their changing variability (hypothesis 3b).

METHODS
Model of the Task

Task dynamics. The model task emulated the everyday activity of
transporting a cup of coffee, simplified to transporting an arc (the cup)
containing a ball (Fig. 1). The motion of the ball within the cup was
dictated by pendular dynamics. The cup was constrained to move
along one horizontal dimension and had a semicircular shape, which
was equivalent to the ball’s pendular path. This system is underactu-
ated, because control inputs can only be applied to the cup and not to
the ball. The equations of motion were the same as for a cart (cup) and
pendulum (ball) system (Hinrichsen and Pritchard 2005) and were
derived using Euler-Lagrangian mechanics (for more detail, see
APPENDIX). The first equation of motion is

(m+ M)i=Fu+ Fg, )
and the second is

.. X g

GzzCOSG—ZSine, 2)

where M is the cup mass, m is the ball mass, 6, 6, and @ are the ball
angle, angular velocity, and angular acceleration, respectively, i is the
cup’s horizontal acceleration, ¢ is the pendulum length, g is gravita-
tional acceleration, F, is an external horizontal force applied to the
cup, and Fy is the horizontal reaction force of the ball on the cup,
given by

FB=m€écos0—m€é2 sin 6. 3)

A positive cup displacement is defined when the cup moves toward
the right, and a positive increase in the pendulum angle is defined
when the pendulum swings in a clockwise direction. Although a
variety of models could have been used (e.g., a ball that slides or rolls
inside the cup surface), the cart-and-pendulum model was chosen
because it is a well-studied model task in physics and engineering.
Also, although a veridical model of the full fluid dynamics of a cup of
coffee would be interesting, it was not necessary for the purposes of
this study.

Energetics. The ball-and-cup system can be characterized in the
inertial reference frame by computing the net kinetic energy, KE, of
the ball and cup as

1

1 . .
KE = JM* + Em(}éz — 206 cos 0+ £267), )

where X is the cup velocity, and the potential energy, PE, as
PE = mg{(1 — cos 6), ®)
which together give the total ball and cup system energy, TE,
TE = PE + KE. (6)

The movement of the ball within the cup can be characterized in terms
of the kinetic energy of the ball, KEg;,; ;. computed in the local
reference frame of the cup as
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Fig. 1. Progression from actual task (A) through
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Virtual Interface

the conceptual model (B) to the mathematical
model (C) and its implementation in a virtual
environment (D). In the mathematical model, x is
the cup position, M is the cup mass, m is the ball

Robotic
Manipulandum

mass, 6 is the ball angle, 6.4 is the escape angle,

Screen and € is the pendulum length.

\

1 2
KEpais = Em(fﬂ) . %)
The gravitational potential energy of the ball, PEy ., ;. is the same as
in the inertial reference frame, i.e., PEg.;; = PE.

Safety margin. The cup imposes an angular constraint on the ball.
The ball angle 6 should not exceed the maximum angle subtended by
the cup, termed the escape angle 0, because this is equivalent to
losing the ball. This safety constraint can be quantified as the height
of the ball relative to the cup rim, i.e., PEg,;; relative to the
maximum allowable potential energy PE\y,x, Which occurs when the
ball is at the cup rim (Fig. 24), i.e., when 6 = Ogqc. This maximum
potential energy PEy,,x 1S given by

PEypx = mgl(1 — cos Oggc), 8

and a safety margin can be defined in terms of a potential energy
margin EM ., given by

EM pp = (PEyiax — PEp1L)/ PEyiax- &)

If EM . is positive, then the ball is in the cup; if it is negative, then
the ball has escaped. A smaller EM . value corresponds to a smaller
safety margin.

A significant limitation is that EM . ignores whether and how fast
the ball is moving within the cup. Even if the ball is at the bottom of
the cup (maximum EM ), it may have a large velocity and might
escape in the immediate future. To account for this, the energy margin
calculation needs to be appended by adding the ball kinetic energy
KEg Ap 1 (Fig. 2B) to define the energy margin EM ., xr as

EMpg, i = [ PEyiax — (PEgarr + KEparr) |/ PEyiax.  (10)

This formulation uses the same energy limit PE\, ., because if the
ball is right at the cup rim (i.e., PEg o, ;. = PE\;ax), then the ball must
have zero velocity within the cup (KEg,;;. = 0); otherwise, the ball
will escape at a future time.

EM py; EM pgike EM (pe+KkE+PSE)
A Ball Height B Ball Velocity C Ball Velocity
(Potential Energy) (Kinetic Energy) (Kinetic Energy)
----- KE
\_) 1 PE / KE /
TFBallHeight \_}i Ball Height
........ (Potential Energy) ~-----Y. (Potential Energy)
PE > PE
Cup Acceleraiton
(Pseudo Energy)
PSE

Fig. 2. Illustration of different safety margin calculations. The safety margin is quantified in terms of a ball energy margin EM relative to ball escape. Three
variants are shown: a potential energy margin EM . that only depends on ball height relative to the rim height (A), EM p1 g, Which includes both potential (PE)
and kinetic energy (KE) of the ball (B), and EM pg, ki psky Which accounts for ball potential and kinetic energy and subject inputs via cup acceleration (C).

PSE, pseudo energy.
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A limitation of this calculation is that it assumes that the cup is not
accelerating. In other words, if there is a positive safety margin,
EMpp, k- > 0, it is assumed that the ball will oscillate within the cup
indefinitely and never escape. This is not true if the cup is accelerat-
ing, i.e., ¥ # 0 (Fig. 2C). In such an accelerating, non-inertial
reference frame, there is a pseudo force that will change the ball’s
energy, which must be accounted for. The pseudo ball energy,
PSEg 11 18 given by

¥=0 —mxf sin 6 + mi€

¥<0 (1

PSEpas { —mx{ sin 6 — mi€.
The conditional nature of PSEg,,, results from the use of a zero-
energy reference (mif) that avoids negative energies. Specifically,
when X is positive, the zero-energy reference is when the ball or
pendulum is aligned with the left horizontal (6 = 90°); when ¥ is
negative, the zero reference is the right horizontal (6 = —90°). Instead
of using this case distinction, we can equivalently take the absolute
value of the acceleration term, giving a single equation

PSEgpL = —mi sin 0 + m| | €. (12)
Details of the PSEg,;; derivation can be found in the APPENDIX.
Hence, the total energy of the ball TEg ; ; in the local cup reference
frame is given by

TEgaLL = KEparL + PEgarL + PSEgaLL- (13)
A new energy limit is defined, called the escape energy, Exg, which
modifies PEy;,x by adding terms to account for PSEg ;. such that

Eggc = mg€(1 — cos GESC) - m|x|€ sin Oggc + m|)‘c’|€. (14)

In contrast to Eq. 12, the absolute value of X is taken in the first
PSEg o 1. term as well as the reference offset term. This “corrects” for
the fact that there are actually two escape angles, Oggc and — Oggc,
and the pertinent one depends on the sign of X (see APPENDIX). As long
as TEgar < Egge, the ball will stay below the escape angle,
assuming ¥ remains constant. This new EM is given by

EM = (Egsc — TEgarL)/ Egsc: (15)
The EM subscript PE+KE+PSE is not included for simplicity. The
difference Epge — TEgap. represents how close the current ball
energy is to exceeding the escape energy. This quantity is normalized
to Eggc to ease interpretation: if EM is between 0 and 1, the ball will
not escape, but if EM is negative, it will escape, assuming X is not
changed (alternative normalizations could be used; see APPENDIX).
Note that Epq- depends on X and therefore changes during cup
transportation. It should be emphasized that EM extrapolates, i.e., it
takes the instantaneous energy of the ball and predicts whether the ball
will escape in the future with constant ¥. Accordingly, Ergc is not a
“hard” constraint and can be exceeded for brief periods, provided an
appropriate and timely correction is made before the ball reaches the

Fig. 3. Virtual task and visual display. Subjects
were instructed to transport the cup from the left
green start box to the right green target box in
exactly 2 s without letting the ball escape from
the cup. After the cup left the start box, a white
box descended with constant velocity and over-
laid the target box after 2 s, visually signaling the
target time to subjects. At the target time, the cup
had to be stopped inside the target box. A second
group of subjects performed the task in minimum
time without the white timing box. Note that the
distance between the start and end boxes has
been reduced in this depiction; the actual dis-
tance (0.40 m) appeared longer. 7, time.
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cup rim. If Eqc is exceeded, the minimum time available to make a
correction is the sensorimotor delay time. If ball energy is below
Ergc, then the time to escape is infinite and the ball will oscillate
within the cup until ¥ is changed.

Experimental Design and Procedures

Participants. A total of 18 young (21-35 yr) healthy male and
female adults participated in the study. Subjects were randomly
assigned to either a target-time group or a minimum-time group, with
nine subjects in each group. One subject participated in both groups.
No exclusions were made on the basis of sex, race, or ethnicity.
Subjects were not told about the specific purpose of the study. Before
participating, subjects were informed of all experimental procedures
and read and signed an informed consent document approved by the
Institutional Review Board at Northeastern University.

Instrumentation. Subjects were seated 2.4 m from a rear-projection
screen on which they saw a virtual cup displayed as a simple arc with
a ball (Fig. 1). They could manipulate the cup by applying forces to
a custom-made handle attached to a robotic manipulandum (Haptic-
Master, Moog, The Netherlands; Van der Linde and Lammertse
2003). Although the robot had three translational degrees of freedom,
it was constrained to medial-lateral motion in the horizontal plane.
The robot used admittance control with dedicated haptic and graphic
servers operating at 2,500 and 120 Hz, respectively. All graphic
programming and computations related to the ball were performed on
the graphic server via a custom C++ program. At each program
iteration, the graphic server queried the haptic server for the current
robot arm kinematics (x, x,%) and computed the acceleration of the ball
6 using Eq. 2. To increase the task challenge, the ball was made more
responsive to movements of the cup by multiplying the cup acceler-
ation ¥ by a gain z and then solving for  in Eq. 2, where z = 5. With
this modified 6, the ball  and # values were computed using a
fourth-order Runge-Kutta integrator, and the force of the ball on the
cup Fy was computed by using the modified ball kinematics and
solving Eq. 3. This ball force was sent to the haptic server, which
computed the resulting medial-lateral acceleration of a virtual mass
(m + M) according to

Fg+ Fy
i=—

m+M (16)

The visual scene was then updated, and the robot motors moved the
manipulandum according to X. The parameters were as follows: Ogg- =
35°,¢ =035m, M = 3.5 kg, m = 0.3 kg, and g = 9.81 m/s>.

Visual feedback. Subjects saw neither the pendulum nor the pivot
point; they only saw the ball at the end of the pendulum (Fig. 1B). The
cup was drawn as an arc that subtended an angle of 26054-, which
moved horizontally with the pivot point but was drawn below the
pivot point so that the cup appeared to hold the ball. Two filled green
rectangles were displayed, one serving as the start box and one as the
goal box (Fig. 3). The on-screen distance between the centers of the
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boxes was 1.0 m; however, the actual physical distance D that subjects
needed to traverse with the manipulandum was 0.4 m (the projected
feedback was magnified by a factor of 2.5). The on-screen cup width
Weyup Was 5.75 cm, and the width of the start and goal boxes wgoar.
was 9.20 cm (1.6-weyp).

Protocol. Data were collected while participants practiced the
transportation task in 5 blocks of 60 trials (300 total), with brief rest
breaks between blocks. A numeric timer display started as soon as the
right edge of the cup passed the rightmost edge of the start box and
terminated when the cup was stopped (¢ < 0.02 m/s) inside the
boundaries of the goal box, after which the robot arm locked and the
trial ended. To prevent participants from spending a disproportional
amount of time trying to keep the cup still in the goal region, the goal
box was made “sticky” by applying a damping force F, = —26x to
the cup when both cup edges of the cup were inside the goal, i.e.,
when

D — 0.5(wgoaL — Weup) <x <D + 0.5(wgoaL — Weup) - (17)

No damping was applied to the ball. The ball was not required to be
still upon reaching the spatiotemporal goal; it only needed to stay
inside the cup. If the ball escaped from the cup at any time, including
after the cup was stopped in the goal, the robot arm locked and the ball
was shown rolling out of the cup and falling toward the floor
(accompanied by a “failure” sound), ending the trial.

Condition 1: target-time task. In this condition the goal was a
spatiotemporal end state, i.e., move the cup to a spatial goal in a
specific time. In pilot work subjects were asked to transport the ball
and cup to the spatial goal “at a comfortable speed”” without letting the
ball escape. No feedback was provided regarding the movement time,
and no explicit rewards were provided. After initial transients (related
to learning object dynamics), subjects converged to a movement time
close to 2.0 s. Therefore, this time was chosen for the target-time task,
in which subjects were instructed to move the cup and stop in the goal
box in a goal time of T5o;. = 2.0 s without letting the ball escape.
This could be achieved with an infinite number of strategies because
the 2.0-s target time was well within the subject’s capabilities.

This movement time was visually signaled, so subjects did not
need to learn an abstract temporal interval. Once the cup left the
starting region, a white rectangular timing box descended from
above the goal box with constant velocity (Fig. 3), overlaying the
goal when 2.0 s had passed. The cup was to be brought to a stop
at this moment, i.e., the arrival of the timing box and the cup should
be simultaneous. After the end of the trial, subjects were shown their
temporal error AT = Tgoa, — T. If AT < 50 ms, a sound signaled
successful performance; if AT < 10 ms, a different sound signaled
excellent performance. Points were awarded, which increased expo-
nentially to 100 (maximum) as AT decreased toward zero (an expo-
nential increased subjects’ motivation). No points were awarded if AT
exceeded 1.0 s. If the ball escaped, 100 points were subtracted from
the running score.

Condition 2: minimum-time task. Subjects were instructed to trans-
port the ball and cup to the goal box in minimum time, for which there
was a single optimal solution that depended on task constraints. If
there were no constraints, then the movement time could be driven
toward zero by applying forces of infinite magnitude to give infinite
cup accelerations. However, because humans cannot apply infinite
forces, there is a single time-optimal solution for a given set of
physiological constraints. In contrast to the redundant target-time task,
the white timing box was not displayed, subjects were shown their
movement time (instead of a temporal error) after each trial, and
points increased as times grew shorter (100 points if 7 < 1.5 s, 0
points if 77> 2 s). All other aspects of the task were the same,
including the requirement for keeping the ball in the cup and the
penalty for ball escape.
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Data Analysis

Data analysis was performed with MATLAB. The raw data in-
cluded time histories for x, %, %, 6, 6, 6, and F,, which were filtered
with a dual-pass fourth-order low-pass Butterworth digital filter. Only
trials in which the target location was reached and the ball was not
dropped were analyzed. To facilitate averaging movement patterns
across subjects for graphical presentation, time histories were normal-
ized to a unitary movement time (0—100%) using linear interpolation.

The safety margin was assessed using the energy margin EM
derived above. Variability in subjects’ movement patterns across trials
was quantified by the intertrial standard deviation of the average total
energy, TEgrp. The total energy TE is a global measure of task
performance, representing the combined effects of subject’s control
inputs and movement of the ball within the cup. Note that TE is the
total energy of the ball and cup in the global reference frame (Eq. 6),
which is different from the total energy of the ball 7Ey ,, ; in the local
cup reference frame (Eg. 15). Movement time alone was not a reliable
indicator of the intertrial variation in subjects’ movement patterns,
because large changes in the movement time could result from
relatively minor adjustments of cup position near the goal box. This
could occur when the cup was stopped just outside the goal box and
a small adjustment was needed to bring the cup fully inside the target
region.

To assess whether subjects in the target-time group used a wider
range of strategies than those in the minimum-time group, subjects’
F , profiles were compared within the two groups. For this comparison
the last 10 trials were interpolated (0—100% of movement time),
averaged, and scaled to the peak positive force. Each subject’s
representative F, profile was compared with other subjects’ profiles
in a pairwise manner using dynamic time warping (Berndt and
Clifford 1994). This method takes two time-dependent sequences,
warps or shifts them in time to find an optimal match, and provides a
metric representing the distance between the two warped sequences.
This analysis focuses on differences in the shapes of the force profiles,
rather than only time-related stretching and/or compression from
varying velocities. Each subject’s average force profile was compared
with all others in the group, and an average distance cost was
computed for each subject.

Statistical Analysis of Experimental Data

To assess changes in end-state performance, we used paired 7-tests
to compare the mean absolute temporal error (target-time group) and
movement times (minimum-time group) early and late in practice
(first vs. last 30 trials). A similar procedure was used to assess changes
in trial-to-trial variability of temporal error/movement time and total
ball and cup energy profiles TE4, with practice. A two-sample #-test
was used to test whether the average distance costs for the target-time
group F, profiles were different from those of the minimum-time
group, i.e., to test whether one group had a greater diversity of
movement strategies than the other (hypothesis I). For both groups,
changes in the average EM with practice were assessed using paired
t-tests of the first vs. the last 30 trials (hypotheses 2a and 2b). Pearson
product-moment correlations were used to determine if any relation
existed between the late-practice EM and trial-to-trial variability
TEy1 (last 30 trials; between-subjects comparison; hypothesis 3a).
Correlations were also performed to assess the relationship between
changes in the energy margin, AEM, and changes in trial-to-trial
variability, ATEqrp (first 30 vs. last 30 trials; within-subjects com-
parison; hypothesis 3b). For all statistical tests, two subjects in the
target-time group were identified as outliers and excluded. In contrast
to the other seven subjects in the group, these subjects increased the
variability of their movement patterns and used a different high-
acceleration movement strategy (see RESULTS). Significance was set at
P < 0.05 for all tests.
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RESULTS
Changes in Task Performance and Variability with Practice

Figure 4A shows how subjects in each group improved their
end-state performance. The target-time group decreased their
absolute temporal error from an initial 213 = 129 ms to 57 *
12 ms late in practice (P = 0.016). The minimum-time group
started with an average movement time near 2 s (2.01 = 0.161 s)
and decreased this time by the end of practice (1.54 = 0.064 s;
P < 0.001). At the end of practice, the minimum-time group
was still improving by a small amount (Fig. 4A); however, this
was not problematic because the goal was to elicit a significant
improvement in end-state performance, rather than examine
asymptotic performance. The fastest time achieved by any
subject in the minimum-time group without letting the ball
escape was 1.33 s. Both groups decreased their trial-to-trial
variability in their movement timing (Fig. 4B) with practice, as
expected (target-time group: P = 0.007; minimum-time group:
P = 0.002). Given that timing variability was partly influenced
by homing-in adjustments, we also evaluated trial-to-trial vari-
ability in subjects’ energy profiles, quantified by the standard
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deviation of the average total ball and cup mechanical energy,
TEgrp (Fig. 4C). The target-time group showed a small but
significant decrease in TEqp, with practice (P 0.040),
whereas the minimum-time group increased TEqr, (P <
0.001). This shows that although the minimum-time group’s
movement timing became more consistent with practice, their
movement profiles became increasingly variable across trials.
Also shown for the target-time group is the average for the two
outlier subjects (dashed line), who increased TEq, over prac-
tice instead of showing a decrease; however, the magnitude
and variability of the timing error for these two subjects (Fig.
4, A and B, respectively) were mostly within the range of the
other subjects’ (=1 SD) and are therefore not shown sepa-
rately. The time constants of the individually fit exponentials
for subjects were not different between the groups (movement
timing, P = 0.272; movement timing variability, P = 0.512;
total energy variability, P = 0.098).

Exemplary Movement Profiles: Kinematics and Energetics

Figure 5 shows the time course of kinematics and energy
profiles for the first (dashed lines) and last (solid lines) 10 trials
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Fig. 5. Ball and cup kinematics and energetics for 2 representative subjects from each condition. Cup position x, cup velocity x, ball angle 6, and total
mechanical energy of the ball and cup system TE for the first (dashed lines) and last (solid lines) 10 trials are shown in a subject from the target-time
group (A) and in a subject from the minimum-time group (B). The angle 6 at which the ball would escape was *£35° and is indicated by the black “ball

escape” boundaries.

of 2 representative subjects. For the target-time task, cup
velocity X increased with displacement x, which caused the ball
to move backwards relative to the cup, indicated by positive 0,
followed by about two back-and-forth oscillations of the ball as
the cup was transported to the goal. The ball escape angle
(*+35°) is indicated by the black “ball escape” boundary.
During cup transit, the total energy of the ball and cup TE
increased and then decreased. It remained nonzero at the end of
cup movement, since the ball was permitted to oscillate as long
as it did not go past the cup rim. For the minimum-time task,
the magnitude of & increased substantially with practice and the
ball came much closer to the escape angle; correspondingly,
TE was considerably higher.

Average Force Profiles

Figure 6 shows the average time-normalized F', profile of
all subjects in the two groups at the end of practice. Each

A

Target-Time

line represents one subject’s average profile; the shaded
band denotes =1 SD. Figure 6 highlights differences be-
tween subjects and groups. Note that the dashed lines
represent the two outlier subjects in the target-time group.
These subjects showed a rapid initial rise in their applied
force, causing a large initial cup acceleration. To address
hypothesis 1, the target-time group’s average F, profiles
were compared with the minimum-time group’s profiles
using dynamic time warping, which provided a distance
metric representing the similarity of the profiles within each
group. The distances were not different between the groups
(average normalized cumulative distance between subjects:
target-time group, 2.2 * 1.5; minimum-time group, 3.3 =*
1.3; P = 0.139). This result does not support hypothesis 1,
which specified that the target-time group would display
more varied movement strategies (greater distances) than
the minimum-time group.

Minimum-Time

Fig. 6. Average applied force F, profiles for the
last 10 successful trials for all subjects. A: tar-

get-time group. Dashed lines show 2 outlier
subjects who had a much larger rate of initial
force development. B: minimum-time group.
The mean (solid line) and SD (shaded band) are
shown for each subject. Time was normalized to
the total movement time.
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Energy Margin

It is instructive to visualize the energy margin EM and ball
escape energy Eggc in execution space (Fig. 7A). This space is
spanned by three variables, 6, 6, and X, that together define
EM. Two different perspectives of one successful (Fig. 7A) and
one failed trial (Fig. 7B) are shown for one subject in the
target-time group. The two-dimensional surface (blue mesh)
denotes the Epg- manifold, where EM = 0. As long as the
trajectory remains inside this manifold (where EM is between
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0 and 1), the ball will never escape (under the assumption of
constant ). If outside the manifold where EM is negative, the
ball energy exceeds Epgc, the ball will escape unless X is
changed by making a “correction.” In the successful trial, the
trajectory stayed largely within the Epg- manifold, but in the
failed trial it moved well outside the manifold and the ball
escaped. Note that EM does not consider time directly; it might
not be possible to initiate a correction before the ball escapes.
For reference, the manifold delimiting a 120-ms (an approxi-

Perspective 2

(d@g Vs ) 6 (d eg)

Perspective 2

Energy Margin Comparisons
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0.2 .
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Fig. 7. Safety margin defined as an energy margin relative to ball escape. A: an exemplar successful trajectory (trial) in 3-dimensional execution space, spanned
by ball angle 6, ball angular velocity 6, and cup horizontal acceleration %, which together specify the ball energy in the cup reference frame. The escape energy,
Erqc, describes a 2-dimensional manifold (meshed blue surface). Assuming X is unchanged, when the trajectory is inside the Exg- manifold, there is a positive
safety margin and the ball will remain in the cup (green trajectory); if the trajectory is outside (black trajectory), there is a negative safety margin and the ball
will escape unless a correction is made (i.e., a change in X). The pink outer boundary represents a time to ball escape of 120 ms, an approximate human
sensorimotor delay. If the time to escape falls below this time, it is impossible to make a reactive correction to prevent ball escape. B: in the failed trial the
trajectory moved outside the outer boundary (red trajectory) and escaped a short time later (magenta square). C: exemplary time series of # and i for the
target-time task (leff) and corresponding safety margin measures (right). Three variants are shown: /) the energy margin EM (solid green/black line,
PE+KE+PSE), which accounts for the ball energy and the subject inputs through X, 2) EM p, x, Which only considers ball potential and kinetic energy (purple
dashed line), and 3) EM, which is a function of only the ball potential energy (blue dashed line).
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mate sensorimotor delay; Jeannerod 1988) time-horizon for
ball escape is shown in pink in Fig. 7, A and B. If the trajectory
is outside this outer manifold, recovery is no longer possible
because subjects would need to initiate a correction in less than
120 ms. Note that this does not account for the fact the subjects
could use “preplanned” corrections, which circumvent this
120-ms boundary.

Figure 7C shows the ball and cup kinematics and the
corresponding EM for a different successful trial (target-time
task). For comparison, Fig. 7C also shows the two simpler EM
measures, which ignore cup acceleration ¥ (EMp, and
EMpp ) and ball velocity (EMpp). EMpp and EMpg. p
differ most when the ball swings through the bottom of the cup,
whereas EM is most different at the beginning and end of the
movement, where the magnitude of X is the greatest. As the cup
accelerates and the ball swings toward the cup rim, EM
decreases sharply, varies as the movement progresses, and
reaches a minimum near the end. Because EM was positive at
the end of the movement, the ball stayed in the cup (once the
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cup is brought to a stop in the goal, the manipulandum locks
and the net ball energy does not change). Although the two
other EM measures, EMp, and EM pp, xf, appear less complex
and potentially more accessible to subjects, the full EM mea-
sure is needed to characterize the safety margin because both
ball position and velocity define the state of the ball, and ¥
reflects the immediate control actions applied to the cup, which
change the ball energy.

Ball Escapes

Figure 8 depicts the number of failed trials as a function of
location (A) and movement time (B), i.e., when and where the
ball was lost during the trial. As expected, the number of ball
escapes was much larger in the minimum-time group compared
with the target-time group (~19 vs. ~2% of all trials). The
histograms in Fig. 8 illustrate that in both tasks most of the ball
escapes occurred near the end of movement and, to a smaller
degree, soon after the start. Rarely did subjects fail near the
middle. The large EM dip at the end is consistent with the large
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Fig. 8. Failures (ball escapes). Histograms show
the total number of failures for all subjects ag-
gregated across the practice sessions for the
target-time and minimum-time groups. The
same failure data are presented as a function of
the cup position at failure (A), movement time at
failure (B), and stage of practice (C).

15 2 25 3 35

Time at Failure (s)

Minimum-Time

3 4 5
Practice Block Number (60 Trials/Block)

J Neurophysiol » doi:10.1152/jn.00019.2012 « www.jn.org


http://jn.physiology.org/

1358

ENERGY MARGINS IN DYNAMIC OBJECT MANIPULATION

Legend ‘ Increased EM: ]

Decreased £ I ‘

A . Target-Time C Target Minimum
ate - . .
Fig. 9. Changes in energy margin with practice. 1.0 Practice g Time Time
A: continuous energy margin EM over the time /
of a trial (normalized to 100%) for 4 exemplary = 0.5 ‘
subjects from the target-time group. Dark/light S5 £
shading indicates a decrease/increase in EM (be- 0 Eary V v ¥
tween the average for first vs. last 30 trials). 0.5 Practice
B: data for 4 exemplary subjects from the min- 0 50 100 0 50 100 0 50 100 0 50 100
imum-time group. C: summary changes in EM Movement Time (%)
with practice. Each data point represents the ‘
average for the first (early practice) or last (late B Minimum-Time
practice) 30 trials. Subjects performed either the 1.0 Y
target-time (triangles) or minimum-time experi- 05 0251 A «
ments (circles). Open triangles denote the 2 out- = ’
lier subjects; arrows identify the 1 subject who & 0
completed both experiments. 027 =
_O':O 50 100 0 50 100 0 50 100 0 50 100 0154  — —
Movement Time (%) Early Late Early Late

negative acceleration when the cup is brought to a stop (see
Fig. 7C and Fig. 9, A and B). Based on this EM dip and the high
percentage of failures near the end of the cup transit (in both
distance and time; Fig. 8, A and B), this can be viewed as the
most “dangerous” portion of the task. While the maximum EM
dip occurred before the end of movement, ball escapes gener-
ally occurred immediately at movement termination or after a
small delay. This is because EM is an extrapolative measure
that predicts future escape, so there will be a delay until the ball
actually escapes. Also shown in Fig. 8C is the number of failed
trials as a function of practice. As expected, the number of
failures decreased with practice in the target-time task. Con-
versely, the failure rate steadily increased in the minimum-time
group, except for the last block, which showed a decrease. For
clarity, the target-time outliers are not shown; however, their
failure rates were similar to those of the other subjects in the

group.
Energy Margin Changes With Practice

To address hypothesis 2, the energy margin EM was first
examined over the course of a trial. Figure 9 shows EM for four
exemplary subjects from the target-time group (A) and the
minimum-time group (B). The averages for early and late
practice trials (first/last 30 trials) are shown. The change with
practice is highlighted by gray (increased EM) and black
shading (decreased EM). On average, the target-time group
increased EM, whereas the minimum-time group decreased
EM, as expected from hypothesis 2.

A summary view of EM changes was obtained by averaging
EM across each trial and submitting these averaged data to
statistical tests. Figure 9C displays the changes in EM for the
target-time group and the minimum-time group from early to
late practice. Each data point represents the first or last 30 trials
averaged for 1 subject. The minimum-time group decreased
EM with practice (P = 0.025), whereas the target-time group
increased EM (P = 0.006). One subject who participated in
both groups is identified with small black arrows. Despite
exposure to both conditions, this subject increased/de-
creased EM in the same way as the other subjects in each
group. These results are consistent with the hypothesis that
the minimum-time group would decrease their safety mar-
gins (hypothesis 2a) and the target-time group would in-
crease theirs (hypothesis 2b).

Energy Margin and Trial-to-Trial Variability

Given these supportive results, this issue is taken one step
further in hypothesis 3: Do individuals adapt their energy
margin in accordance with their change in variability? To this
end, the trial-to-trial variability of subjects’ movement strate-
gies was quantified by the standard deviation of average total
ball and cup mechanical energy across trials, TEgp, and was
compared with the average EM. Figure 10 shows correlations
between these quantities for both subject groups. At the end of
practice (Fig. 10A), there was a significant positive correlation
between EM and TEgr for the minimum-time group, i.e.,
subjects with higher variability had larger safety margins.
However, there was no correlation for subjects in the target-
time group. Different results were found when analyzing these
relations within each subject by correlating the change in the
EM (AEM) with the change in TEgr, (ATEgrp) from early to
late practice (Fig. 10B). In this case, the target-time group
exhibited a significant positive correlation. Subjects with large
decreases in variability had small increases in their safety
margin; those with small decreases in variability had larger
safety margin increases. There was no correlation for the
minimum-time group.

DISCUSSION
Task and Quantification of Safety Margin

Compared with the multitude of data from studies examining
reaching and/or manipulation of rigid objects, little is known
about how humans control objects with underactuated dynam-
ics or internal degrees of freedom. To date, only a few studies
have investigated such “flexible” objects (Dingwell et al. 2002,
2004; Nagengast et al. 2009; Svinin et al. 2006). Importantly,
in these studies no constraints were imposed on the motion of
the object, except at the beginning and end of movement.
Inspired by the real-life task of carrying a cup of coffee, where
the coffee cup must be manipulated in a way that prevents
spillage at all times, a new model task was created that required
subjects to transport a ball in a shallow cup without letting the
ball escape from the cup. In this task large and/or rapid
fluctuations of the ball (the “coffee”) are associated with
high-energy states, and an energy threshold determines the risk
of ball escape (“spilling coffee”). As in many daily life tasks,
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Fig. 10. Changes in energy margins as a function of trial-to-trial variability and
task redundancy. A: correlations between energy margin EM and trial-to-trial
variability TEgr, during late practice over the last 30 trials for the target-time
group (triangles) and the minimum-time group (circles). B: correlations be-
tween the change in EM (AEM) and change in TEqr, (ATEgyp) from early
(first 30 trials) to late practice (last 30 trials) within each subject. Open
triangles denote the 2 outlier subjects; arrows identify the 1 subject who
completed both experiments.

these energetic constraints must be satisfied in conjunction
with end-state goals, i.e., a safety margin must be maintained
and a target must be reached. It is important to understand how
both of these constraints impact subjects’ control strategies.
A first challenge was to define a measure that quantified the
continuous energetic constraint. To this end, an energy margin
EM was defined, which extrapolates the state of the ball,
assuming constant cup acceleration, and provides a measure of
the total ball energy relative to the escape energy. The EM was
calculated at each instant in time and was continuously updated
to reflect the changing cup control by the subject. As shown in
Fig. 7, the “escape” condition can be visualized as a two-
dimensional manifold in the three-dimensional execution
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space. Exceeding the escape energy is equivalent to breaching
this manifold. Because the EM measure is an extrapolation
based on constant cup acceleration, it is possible that a large
and sudden change in acceleration could cause this boundary to
be crossed without the ball escaping from the cup. However,
this is unlikely because EM was continuously updated (at 120
Hz), so sudden acceleration changes are quickly reflected in the
EM (in <10 ms).

The EM is conceptually similar to other calculations with a
“predictive horizon,” which have been used to understand
catching and driving (Lee 1976; Lee et al. 1983) and in the
assessment of postural control. For the latter, the instantaneous
position, velocity, and acceleration of body center of mass
(Hasson et al. 2008, 2009) or center of pressure (Slobounov et al.
1997) relative to the base of support boundary is extrapolated,
assuming constant acceleration, to predict when the boundary
will be crossed (a short time is less “safe”). One important
difference is that in postural control there is always a finite time
to contact, because upright stance is an unstable configuration.
In contrast, in the ball and cup task, this time can be infinite if
the ball is below the escape energy (EM > 0): for constant
acceleration, the ball will keep oscillating within the cup and
never escape.

It is important to note that the EM measure does not account
for physiological constraints on action, such as the maximum
force that subjects apply to the cup or the maximum rate of
force development that subjects could achieve. Including these
constraints would add considerable complexity. For example,
defining an appropriate maximal applied force is not trivial,
because the maximum force that a muscle can produce depends
on its length and velocity (Gordon et al. 1966; Hill 1938) and
on other time-dependent properties, such as force enhancement
(Edman et al. 1978) and depression (Edman et al. 1993).
Although simpler EM measures based on ball position and/or
velocity appear feasible, these are not adequate for two rea-
sons. /) Cup acceleration due to an external force changes the
ball energy and reflects the immediate control actions applied
to the cup. It is therefore necessary to include. 2) Other
research suggests that the nervous system is likely to use
acceleration information (in addition to position and velocity)
in its modulation of motor commands (Lockhart and Ting
2007).

Hypothesis 1: Redundancy and Changes in End-State
Performance and Variability with Practice

The ball and cup transportation task was used to investigate
how task redundancy influenced subjects’ movement strate-
gies. Redundancy was “created” by giving only sparse instruc-
tions: subjects who performed a target-time task were asked to
complete the cup transit in a comfortable time of 2 s. Although
subjects in this task used different movement strategies, at the
end of practice most applied force gradually over the first half
of movement but had a more variable second half. This
observation is consistent with a two-component model consist-
ing of a preplanned or ballistic movement followed by online
feedback regulation, i.e., a “homing-in” phase (Woodworth
1899). Two subjects within the target-time group had a much
greater initial rate of force development. A large initial force
rapidly accelerates the cup and covers distance quickly, allow-
ing a slower and hence more accurate target approach. How-
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ever, the trade-off is that a large acceleration is more risky and
may lead to a more variable and less predictable cup trajectory,
which is corroborated by the observed decrease in the safety
margin and increase in the trial-to-trial variability for these
subjects compared with others.

In a contrasting task condition, redundancy was “removed”
by explicitly asking subjects to move the cup as fast as possible
(minimum-time group). In this case, there is a single explicit
time-optimal solution, given limits on the rate and amplitude of
muscular force production. This optimal control problem has
been studied extensively in engineering for a model system, a
gantry crane that transports a load (Karihaloo and Parbery
1982). Because there are limits on the torque capacity of the
motor and on the amplitude of the load’s oscillations, there is
a unique time-optimal solution for moving the load with the
crane (Golafshani and Aplevich 1995; Manson 1982; Van de
Ven 1983). The idealized dynamics of the crane and load are
almost identical to those of the ball and cup task. The latter is
based on a model of a cart that translates with a pendular load
and a human acting as the “motor” that pushes/pulls the cart.

It was therefore expected that with practice subjects would
converge to the same strategy in the minimum-time task, which
presents an optimal solution given physiological constraints (as
in the crane transportation problem). However, over the 300
practice trials, subjects continued to use a range of different
strategies to achieve the task goal. Although this does not
support the hypothesis, it does agree with results of Dingwell
et al. (2002), who showed that subjects adopted different
movement strategies when transporting a virtual mass-spring
object to a spatial target. However, there were several key
differences with respect to the present study. The task used by
Dingwell and colleagues required the mass-spring to be still at
the goal location, the object dynamics were linear, and there
were no constraints during the movement (i.e., the mass could
not “escape”). In the present study, the ball could oscillate at
the goal as long as it remained in the cup, the ball and cup
dynamics were nonlinear, and the ball could escape. The goal
was also made “sticky,” which reduced the emphasis on
actively damping oscillations at the goal. At the end of prac-
tice, subjects had a nonzero applied force at movement termi-
nation; this suggests that subjects incorporated the goal damp-
ing into their movement strategies.

One reason why the minimum-time group did not converge
to the same strategy may be because subjects had different
weightings for costs such as control effort (Guigon et al. 2007;
Todorov and Jordan 2002), movement smoothness (Ben-Itzhak
and Karniel 2008; Flash and Hogan 1985), or risk sensitivity
(Nagengast et al. 2010). Differences between subjects could
also arise from varying physiological properties. This is sup-
ported by the relatively large differences in trial-to-trial vari-
ability between subjects, which suggests varying amounts of
intrinsic neuromotor noise and/or uncertainty (Faisal et al.
2008). Also, subjects’ varying strategies could have arisen
from the stochastic selection from several “good enough”
(Raphael et al. 2010) movement plans, as shown by Kodl et al.
(2011).

Hypothesis 2: Safety Margins and Task Redundancy

We aimed to determine how task redundancy affected safety
margins. In the cup transportation task, the safety margin was
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defined in terms of energy, i.e., as an energy margin EM, which
was a nonlinear function of the ball position and velocity and
cup acceleration. Subjects were not informed of the nature of
the safety margin; therefore, they had to discover which move-
ments were safe and which were more risky. This is more
challenging compared with previous studies in which the safety
margin was explicitly defined as the static position of an object
in relation to the arm, as when avoiding an obstacle (Abend
et al. 1982; Dean and Briiwer 1994; Hamilton and Wolpert
2002; Sabes and Jordan 1997).

It was expected that with practice subjects in the minimum-
time task would shift from a conservative strategy to one that
was more risky (decreased energy margin), because increased
cup accelerations are needed to reduce movement time. Al-
though intuitive, this is not a foregone conclusion, because
large accelerations are not by default “dangerous”; the effect is
dependent on the state of the ball. For instance, if the ball is
pushed toward the left side of the cup (positive angle), an
acceleration to the right (positive) is safer than an acceleration
to the left (negative). This is illustrated by the asymmetrical
nature of the escape energy Epgc- manifold in the execution
space (Fig. 7, A and B). A decreased safety margin following
practice is consistent with the findings of previous research on
grip force adaptation (Crevecoeur et al. 2009; Gordon et al.
1993). These studies concluded that as subjects became famil-
iar with the dynamics of the gripped object with repeated lifts,
they reduced their grip force and decreased their safety mar-
gins, presumably to minimize energy expenditure.

In contrast to the minimum-time task, which encouraged
subjects to push the limits of their capabilities, subjects in the
target-time task had a “choice” in developing their movement
strategies. It was hypothesized that in this task subjects would
take advantage of redundancy and find strategies with greater
safety margins. This is because large safety margins confer an
advantage, as they reduce the risk of ball escape, allowing
subjects to focus less on the ball and more on accurate
achievement of the end-state goal. Consequently, the results
showed that subjects increased their safety margin with prac-
tice, supporting the hypothesis. This agrees with Nagengast
et al. (2010), who used a risk-sensitive optimal feedback
control model of reaching to show that most subjects are not
risk neutral but are risk adverse. It is further consistent with the
findings of Sternad and colleagues (Miiller and Sternad 2004,
2009; Sternad et al. 2011), who have shown that in a redundant
throwing task, subjects develop strategies that are tolerant to
performance errors due to execution variability.

Error tolerance quantifies the sensitivity of a given move-
ment strategy to noise in repeated task executions (Cohen and
Sternad 2009; Miiller and Sternad 2004, 2009; Sternad and
Abe 2010; Sternad et al. 2011). If tolerance is high, then
variability in execution will have relatively little effect on the
task outcome or result. This previous work on error tolerance
has used a discrete throwing task where the result variable, the
scalar task error, is completely described by the execution
variables of the arm (angle and velocity) at ball release. This
mapping from two variables to one result creates redundancy.
However, application of the tolerance analysis introduced by
Miiller and Sternad (2004) to the continuous cup transportation
task is not straightforward: in the ball-and-cup task, the result
variable is the energy margin EM, which is defined at every
moment along the cup trajectory and is a priori unknown to
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subjects. The execution variables include the ball states, angle and
velocity, and the cup acceleration, which together define EM.
Alternatively, the execution and result variables could be defined
with reference to the end state goal, instead of the ball-in-cup
constraint. Here, a redundant set of cup and ball trajectories (the
execution variables) can be defined from which subjects will
chose a subset to achieve the result variable, i.e., the target
time. Current research is developing a method to analyze
tolerance with respect to the end-state goal in continuous
tasks.

Hypothesis 3: Variability and Safety Margins are Jointly
Modulated With Practice

The final purpose of this study was to examine how safety
margins are modulated with respect to motor variability and
how such a relation might depend on task redundancy. The
results showed that the way in which subjects’ safety margins
changed with practice in a redundant task was explained in
large part by how their trial-to-trial variability changed. Spe-
cifically, analysis within individuals revealed that smaller de-
creases in variability were associated with larger increases in
safety margins, and vice versa. Those subjects who converged
toward a consistent movement pattern may have been more
confident in their ability due to a relatively small amount of
execution noise and therefore did not need a large safety
margin. On the other hand, subjects with greater trial-to-trial
variability may have chosen a larger safety margin to accom-
modate the greater uncertainty associated with more variable
movements. This agrees with previous work suggesting that
variability plays a central role in movement control such that
the motor system optimizes movements to minimize the effects
of variability on task goals (Chu WT, Sternad D, Sanger TD,
unpublished observations; Cohen and Sternad 2009; Gepshtein
et al. 2007; Harris and Wolpert 1998; Hudson et al. 2010;
Sternad et al. 2011; Trommershiuser et al. 2005). The novelty
of the present findings is that they span a period in which
significant learning has occurred, and they support the hypoth-
esis that individuals shape their control strategies in accordance
with their variability.

Whereas in the minimum-time task, changes across practice
were not observed, a clear positive correlation between safety
margins and variability was observed at the end of practice
after subjects converged to their preferred strategies. In this
condition, subjects were instructed to push the limits of their
capability by moving as fast as they could. This drive toward
limit performance is supported by the fact that the trial-to-trial
variation in subjects’ energy profiles, captured by the standard
deviation of the average total ball and cup energy between
trials, increased with practice. High-velocity movements tend
to increase variability, because fast movements require greater
muscle activation, and hence greater signal-dependent noise
(Harris and Wolpert 1998). However, even under these more
variable conditions, the relation between variability and safety
margins was clearly evident at the end of practice. In addition
to signal- or velocity-dependent noise, the nonlinear dynamics
of the ball-and-cup system are likely to contribute to trial-to-
trial variability. A forced-pendulum can exhibit a rich array of
behaviors due to nonlinearities and sensitivity to initial condi-
tions (Van Dooren 1996). Compared with the target-time task,
in the minimum-time task the applied forces were larger, and
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the ball reached larger angles with higher energy states, which
may have caused kinematic profiles to diverge more rapidly
from a planned trajectory.

Although at the task level, the target-time task has an infinite
number of solutions, in principle, any redundant task can be
made nonredundant by introducing a cost function. For exam-
ple, the task of pointing toward a line is redundant, because
subjects could point to any location on the line and fulfill the
task goal. However, if we assume that a subject’s behavior is
guided by a criterion cost that minimizes one or a combination
of task-relevant variables, then a single optimal movement
trajectory can always be found. Indeed, Berret et al. (2011)
recently showed that subjects’ trial-to-trial behavior in a re-
dundant line-pointing task could be explained by stochastic
optimal feedback control (Todorov and Jordan 2002) if it is
assumed that subjects minimize mechanical energy expendi-
ture and movement smoothness. In the present study, if sub-
jects’ behavior was indeed guided by a cost function, it may
likely include terms related to the safety margin in combination
with typical costs such as control effort (Guigon et al. 2007;
Todorov and Jordan 2002) or movement smoothness (Ben-
Itzhak and Karniel 2008; Flash and Hogan 1985). It is likely
that the points awarded to subjects were also factored into the
overall cost. The influence of points or monetary rewards on
movement control has been studied by Trommershiuser et al.
(2005) using relatively simple pointing movements, where the
explicit reward cost may have been the chief consideration for
subjects. However, the task used in the present experiment is
likely to have multiple weighted costs (effort vs. smoothness
vs. reward); separating out the weights of such costs is not
trivial. Although this can be done, each added cost introduces
free parameters that would inevitably increase the fit to exper-
imental data. Instead of specifying a cost function, we used a
data-driven approach to examine the trade-off between vari-
ability and safety margins.

Conclusion

To conclude, this study has shown that when given the
option, most humans prefer movement strategies with in-
creased safety margins and shape their movements in accor-
dance with their changing variability. More broadly, the results
suggest that highly constrained tasks such as the minimum-
time task may be most informative when the research question
is focused on understanding optimized movement strategies
formed after a period of practice. Less-constrained tasks such
as the target-time task may be useful when the aim is to
understand the principles that guide the formation of move-
ment strategies with motor learning.

APPENDIX: DETAILED MATHEMATICAL DESCRIPTION
OF THE TASK

Derivation of Equations of Motion

The ball-and cup-system is analogous to the standard model of a
pendulum hanging from a cart (Fig. 1C). This system has two degrees of
freedom. The kinetic energy of the ball, KEy ., ; , in the inertial reference
frame is

KEgpiL = %m[(x — €6 cos 0)2 + ((fé sin 0)2]
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| . .
= Em(x2 — 2056 cos 0+ £26?), (AT)
where m is the ball mass, € is the pendulum length, 6 is the ball

(pendulum) angle, and 6 is the ball angular velocity. The potential
energy of the ball, PEg,, ., depends only on the ball height,

PEgyp1. = mgt(1 — cos 6). (A2)

where g is gravitational acceleration. For simplicity, the cart will
henceforth be referred to as the “cup.” The kinetic energy of the cup,
KE yp, 18

1
KEcup = EM)EZ, (A3)

where M is the cup mass and X is the cup horizontal velocity. The
Lagrangian L is given by

1 1
L =[KEcyp + KEgpr1] — PEgarL = [EMXZ + 7m
(A4)
(x2 — 2656 cos 6 + €292)] — mgt(1 — cos 6).

Note that the gravitational potential energy of the cup is constant
because the cup’s vertical position does not change; therefore, this

energy is irrelevant. The Euler-Lagrange equation,
dL doL
= (A5)
dg dtag

is used to find the equations of motion. Using the generalized
coordinates x and 6, we have

doL oL e 46)
dtox ox

and
doL oL
——-—=0, (A7)
dl‘ae Jax

where F, is an external force applied to the cup.

First equation of motion. The first equation of motion for the cup
and ball is derived by computing the partial derivative of the Lagran-
gian with respect to x, giving

oL

—= (m+M)x—m€é cos 6. (A8)
ax
Its time derivative is
doL . .
—— = (m+ M)& — mt cos 6 + m€6” sin 6. (A9)
dt ox

The partial derivative of the Lagrangian with respect to x is zero,
aL
—=0. (A10)
ax

Plugging Eg. 9 into the Euler-Lagrange equation gives the first
equation of motion for the generalized coordinate x,

doL oL . o
—_—— = (m+M))'c‘—m€00056+m€6 sin 6 = Fy.
dlaé a0
(A1)
Rearranging gives Eq. I:
(m + M)s = (mt6 cos 0+ m€6sin 0) + Fy.  (AI2)
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Second equation of motion. For the second equation of motion for
cup and ball, the partial derivative of the Lagrangian with respect to

0 is

JL .
— = —mlicosh + m€*0, (AI3)
a0
and its time derivative is
dOL 0% cos 0+ mlx6 sin 0+ me20. (Al4)
dtoo
The partial derivative of the Lagrangian with respect to 6 is
dL .
6_9 = m{x0 sin 6 + mg{ sin 6. (Al5)

Plugging into the Euler-Lagrange equation gives

doL oL - . .
— = (—m€Xcos 0 + m€x0 sin 6 + m¢ 0) - (m€x9 sin 0
dlao a0

— mgl sin 0) = 0. (AI6)
After simplification,

m(f(fé—)'c'cos@-i-gsin 6):0, (A17)

which can be rearranged to give the second equation of motion for the
generalized coordinate 6. The mass disappears if we assume that m
and € cannot be zero, giving Eg. 2:

. X
6=—c056—%sin9.

. (A18)

Derivation of Pseudo Energy

In the local reference frame of the cup, it is assumed that the total
energy is conserved. This allows the explicit characterization of the
energy contributions due to the cup acceleration ¥. In an accelerating
reference frame, there is a pseudo energy, PSEg,,,, that must be
derived. Assuming that cup acceleration is constant, we begin with
zero rate of change in TEg ;.

dTE
BALL _

Al9
7 (A19)
We then take the derivative as

d(KEarL + PEgaLL(Nety) _ dKEga1 . dPEgaLL(Nety 0
dt dt dt

(A20)

Here, TEg A, ;1 is the sum of the ball’s kinetic energy, KEg 5; 1., and the
net potential energy, PEgar 1 (neo:

d( lmlzé2
2 dPEgALL(Nety
+ =0

A21
dt dt @21y

... dPE o -
me?6h + —ot D G (A22)

do
Combining terms gives us
dTE . . dPE .

ﬂ;@ m(ﬂg.,.w =0. (A23)

dt do

If we assume 6 # 0, then we have
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dTEga;L
dt .. dPE
- = mb?0 + M:Q. (A24)
6 do
Just taking the two right-hand terms gives
. dPEgarL(n
me2 + —— D (425)
de
After rearranging, we arrive at
dPEgaLL(N ..
&) (426)

do

Inserting the second equation of motion, 6 =x7€ cos 6 — g/€ sin 0, into
the above equation, gives

dPEgALL (Ner _

—m{? al cos 0— 5 sin 0 (A27)
de ¢ ¢ '

Combining terms, we arrive at

dPEg,
% = —mif cos 0 + mg{ sin 0. (A28)
and integrate with respect to 6 for PEg ;1 (e
PEgaLL(Nety(0) = —mil sin 6 + mg{ cos 6. (A29)

Note that we assume ¥ is constant. PEg .y ner) 1S the sum of the
gravitational potential energy, PEg, and a pseudo energy PSEp. ;.
due to cup acceleration, i.e.,

PEgary(Nety = PSEgaLL + PEG. (A30)
Substituting Eq. 29 for PEg ;1 (nery E1VES
—mx{ sin  — mg€ cos 8 = PSEgar; + PEg. (A3D)
Now we solve for PSEg; ;.
PSEga1 = — PEg — mi{ sin 6 — mg¥{ cos 6. (A32)

The potential energy of the ball due to gravity alone (using a
zero-energy reference of Ogpr = 90° or Ogpr = —90°) is given by

PEg = —mg{ cos 6. (A33)

We substitute PE into Eg. 32, giving the pseudo energy PSEg ;1.

PSEgar = mgt cos 0 — mi€sin 0 — mg€ cos 6.  (A34)

Simplifying gives

PSEgrp = —mi{ sin 6. (A35)

Redefinition of Energy References

The gravitational potential energy of the ball, PE, is dependent on
its height, which is given by Eq. A33. To prevent negative energy
values, we redefine the reference so there is zero gravitational poten-
tial energy when the pendulum is at the bottom of its arc (6 = 0°). To
do this, we add a constant mg{ to Eq. A33, giving

PEg = mgt — mgt cos 0, (A36)
or we can write this as Egq. 5:
PE; = PEga; = mgl(1 — cos 6). (A37)

We also define the reference for PSEg 4, ; to avoid negative energies.
Similar to the way that PE was re-referenced by adding an offset, an
offset is added here, but g is replaced with %. Hence, the offset is mx¢
and Eq. A35 becomes
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PSEga L, = —mi€ sin 6 + mi€. (A38)

Here, when there is a positive cup acceleration ¥, the zero-energy
reference is the left horizontal, i.e., 6 = 90. However, if the cup
acceleration is negative, the zero-energy reference changes to be the
right horizontal (i.e., 6 = —90). This is achieved by adding a negative
sign to the offset: —mif. Based on the conditional nature of the offset,
this can be written as

¥=0 —mifsinf + mi€

A39
<0 ( )

PSE, = .
BALL { —mi{sin — mit.
Instead of using this case distinction, we can write one equation by
taking the absolute value sign of the second acceleration term, i.e.,
Eq. 12:

Definition of Escape Energy

We define the escape energy Eggc as the amount of total ball
energy that, if exceeded, will result in the ball escaping from the cup
sometime in the future under the assumption of constant cup accel-
eration X. To find the limit Egg, we know that if the pendulum angle
is equal to the escape angle (0 = 6zc), then the ball kinetic energy
must be zero. Therefore, we only need consider the net potential
energy as defined earlier,

PEgaLL(Nety = PEG + PSEgarL = mgt(1 — cos 6)

— mx{ sin 9+m|jc'|€, (A41)

and insert the Ogq- for the angle to give Epgc,
Eggc = mgl(1 — cos Oggc) — mi€ sin Opge + m| x| €. (A42)

Note that there is an absolute value sign on the last term, which
ensures a correct reference for the pseudo energy as explained in the
previous paragraph. There is also the possibility that the cup (cart)
may be accelerating in the negative direction. In this case the relevant
escape angle is negative (—6ggc), and a conditional statement is
needed to account for the changing escape angle sign, for instance,

Egsc

_ [£=0 Epsc=mgt(1 = cos Ogsc) — mi€ sin(Ogsc) + m|i|€

k<0 Egge = mgl(1 — cos Ogsc) — mil sin(—Opsc) + m|i| €
(A43)

This conditional set of equations can be simplified by taking the
absolute value sign of the first acceleration term (and using the
positive escape angle, Ozc) to arrive at a more compact form, giving
Eq. 14:

Egsc = mgl(1 — cos Ogsc) — m| x| €sin Ogse + m|x| €. (A44)

If TEg A1 > Egsc, then the ball will escape; otherwise, the ball will
remain in the cup (assuming constant cup acceleration ¥).

Definition of Escape Envelope

All possible combinations of ball states (6, 6) and constant cup
accelerations X that result in the ball staying within the cup for infinite
time form a region in the task space that is bounded by an “escape energy
manifold” (Fig. 7). Outside the manifold, the ball will escape after some
time. For a given constant X, the equilibrium angle of the pendulum 6,
will shift to a new angle, defined as

0o = tanfl()'c'/g).

(A45)

If the pendulum state is 6 = Og, 0 = 0, andx’ = g tan 0O, then the
pendulum will not oscillate but will remain exactly at the equilibrium
angle. In all other cases, the ball will oscillate. Whether or not the ball
stays in the cup is dependent on the size of the oscillations relative to
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the size of the cup. For a given constantX, the minimum and maximum
ball angles 6y, and 6y,,x (Which define the size of the oscillation)
that allow the ball to remain in the cup are

[ Onims Ovax ] = Orq + (Ogsc — Org) - (A46)
and the minimum/maximum ball angular velocity éMIN and éM AX 1S

[ éMIN’ éMAX]

2
= +\/Z[8(C059Esc — cosfpq) + #(sinfgsc — sinfgq) |.

(A47)

Energy Margin

As long as the ball energy stays below the escape energy (TEga;;. <
Ersc), the ball will stay below the escape angle g, assumingX remains
constant. An energy margin can be defined as

EM = (Egsc — TEgaLL)/ Egsc- (A498)

The difference Epge — TEgay represents how close the current ball
energy is to exceeding the escape energy. This quantity is normalized
to Eggc to ease interpretation: if EM is between 0 and 1, the ball will
not escape, but it will if EM is negative, assuming X' is not changed.
Note that Epg- depends on % and therefore changes during cup
transportation. For reference, alternative normalizations can be used.
For example, a different energy margin EM’ could be defined as

EM' = (Egsc — TEga1)/ (Egsc — Erq). (A49)
where
Epg = mg€(1 — cos B’EQ) - m|)‘c’|€sin 0'gq + m|x|€ (A50)
and
0'gq = tan”'(| x| /g). (A51)

The equation for Eg, is the same as that for Egg with Oggc replaced
by 0'pg. Whereas EM normalizes the energy difference Epge —
TEg A, 1. to the critical escape energy Enge, EM' normalizes Epge —
TEg 511, to the difference between Epq and the “least critical energy
state,” Epqg, which is when the ball is at the equilibrium angle OVEQ’
assuming constant x.
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