HOMOTOPIE CATEGORIES OF RINGS

Properties and consequences in module categories

Manuel Cortés Izardía
INTRODUCTION

\(R = \) Noncommutative ring with unit

\(\text{Mod} - \text{R} = \) The category of right modules.

\(\text{C}(R) = \) Cochain complexes with chain maps.

\[
\begin{array}{c}
\rightarrow \\
\cdots \\
\rightarrow \quad \overset{d^{n-1}}{X} \\
\rightarrow \quad \overset{d^{n}}{X} \\
\rightarrow \quad \overset{d^{n+1}}{X} \\
\end{array}
\]

\(A = \) Additive subcategory of \(\text{Mod} - \text{R} \)

\(K(A) = \) Homotopy category

- Objects: Cochain complexes.
- Morphisms: Homotopy equivalence classes of cochain maps.
Given \(X, Y \in C(R) \) and \(f : g : X \rightarrow Y \)

\[f \circ g \iff \exists s^n : X^n \rightarrow Y^{n-1} \text{ with } \]
\[f^n - s^n = d^y s^n + s^{n+1} d_x \]
Properties of $K(A)$

1. $K(A)$ is a triangulated category
 a) Additive
 b) There is an isomorphism (suspension) $\Sigma: K(A) \to K(A)$
 c) There is a class of composable morphisms

 $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$

 called triangles
Main Idea of the Talk

a) Study $K(A)$ using module theory

$\text{Mod-}R \quad \Rightarrow \quad K(A),\ A \in \text{Mod-}R$

b) Study $K(A)$ using triangulated cat. and obtaining consequences in $\text{Mod-}R$
Theorem 1.1. The homotopy category $K(R$-Proj$)$ is always \aleph_1-compactly generated, and as a consequence satisfies Brown representability. But it need not be compactly generated. Precisely

(i) If R is right coherent then $K(R$-Proj$)$ is compactly generated.
(ii) We give an example of an R for which $K(R$-Proj$)$ is not compactly generated.

\aleph_1-compactly generated

$K(R$-Proj$)$ has a set of generators S' such that every $S \subseteq S'$ is \aleph_1-compact:

For any $f: S \to \bigoplus_{i \in I} K_i$, if $J \subseteq I$ with $|J| < \aleph_1$
From Mod-R to $K(A)$

If A is a deconstructible class of modules, then $K(A)$ is coreflective in $K(\text{Mod-R})$ ($K(A) \subset K(\text{Mod-R})$ has a right adjoint).

A is deconstructible if there exists a set of objects $\mathcal{S} \subseteq A$ such that $\forall A \in A$

- $A_\alpha \subseteq A_{\alpha+1}$
- $A_\beta = \bigcup_{\alpha \leq \beta} A_\alpha$, β limit
- $A_{\alpha+1} / A_\alpha \in \mathcal{S}$

Then $(A_\alpha | \alpha < \kappa)$ is the \mathcal{S}-filtration of A
Example 1: Finite length modules

M has finite length if it contains a chain of submodules

$$0 \leq M_1 \leq M_2 \leq M_3 \leq \cdots \leq M_n = M$$

such that there is no submodule between them.

$$\iff \frac{M_{k+1}}{M_k} \text{ is simple}$$

M has a finite S'-filtration for $S' = \text{The set of all simple modules}$
Example 2: Vector spaces

If \(R = k \) is a field and \(V \) is a vector space,

- Take a basis \(\beta \setminus \lambda \in k \) (infinite, \(k \) a cardinal)
- If \(V_\lambda = \langle v_\lambda : v \in \lambda \rangle \), then \((V_\lambda : \lambda \in k) \)
 is a filtration of \(V \) with

\[
\dim_k \frac{V_{\lambda+1}}{V_\lambda} = 1.
\]

Every vector space is filtered by 1-dimenisonal vector spaces.
From $K(A)$ to $\text{mod-}R$

Neeman, Inv. Math, 2008

If we take a complex

$\cdots \rightarrow P_{n-1} \xrightarrow{d_{n-1}} P_n \xrightarrow{d_n} P_{n+1} \rightarrow \cdots$

$\Rightarrow \ker d^n$ is projective.

Remark 2.15. To illustrate the non-triviality of the implication (iii) \Rightarrow (i) let us note a curious aside. Suppose X is an acyclic chain complex

$\xrightarrow{\partial^{i-2}} X^{i-1} \xrightarrow{\partial^{i-1}} X^i \xrightarrow{\partial^i} X^{i+1} \xrightarrow{\partial^{i+1}}$

differential of projective modules. Suppose that, for each $i \in \mathbb{Z}$, the image I^i of the differential $\partial^i : X^i \rightarrow X^{i+1}$ is a flat R-module.

By definition X belongs to $K(R$-Proj), and by (iii) \Rightarrow (i) X also belongs to $K(R$-Proj)$^\perp$. Hence X must be null homotopic. The module I^i, being a direct summand of X^i, is forced to be projective. What is curious about this aside is that the statement is the assertion that certain flat modules have to be projective; it does not mention triangulated categories. I do not know an elementary proof, a proof which avoids homotopy categories.
PERIODIC MODULES

Benson, Goodearl, Pac. J. Methy 2000

In an exact sequence in \text{Mod}-\mathcal{R},

\[0 \rightarrow N \xrightarrow{f} M \xrightarrow{g} N \rightarrow 0 \]

\(f \) monic
\(g \) epic
\(\text{Im } f = \text{ker } g \)

\(M \) projective, \(N \) flat \(\Rightarrow \) \(N \) projective

Remark

We can form the following exact co-ex

\[\cdots \rightarrow M \xrightarrow{f} M \xrightarrow{g} M \xrightarrow{h} \cdots \]

\(s \nrightarrow N \xrightarrow{f} s \nrightarrow N \xrightarrow{f} \)

\(\text{ker } f = \text{Im } g \Rightarrow N \) flat
PERIODIC MODULES

A-periodic modules

Modules M appearing in a short exact sequence

$$0 \rightarrow M \rightarrow A \rightarrow M \rightarrow 0$$

with $A \in \mathcal{A}$

Main problem

When M belongs to A as well?

Bazzoni, CI, Estrade, Alg. Rep, Th., 2020

If $\mathcal{Cot} = $ class of cotorsion modules then

Every \mathcal{Cot}-periodic module is cotorsion.
Totally acyclic complexes X

$$
\cdots \rightarrow X^{n-1} \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1} \rightarrow \cdots
$$

- X^n is projective
- Acyclic: $\text{Ker} d^n = \text{Im} d^{n-1}$
- Totally acyclic

Gorenstein projective modules

If $M \cong \text{Ker} d^n$ for some totally acyclic complex X.

Proj \subseteq GProj
Main open problem

Does there exists, for any module M, a morphism $f: G \rightarrow M$ with

- $f: G \rightarrow M$ with f Gorenstein projective
- Lifting property

Good morphisms to make resolutions and "relative homological algebra"
Theorem (CI-Sasoch, 2022)

Set theory hypothesis

A cardinal k, $E, \lambda, \mu > k$ such that λ is μ-compact

\Rightarrow Every module has a GP-precover for any ring.
FROM K(A) TO Nod-R

If \(X \) is coreflective in \(K(\text{Proj}) \), then every module has a Gorenstein-Projective precovers.

Subcategory of \(C(\text{Mod-R}) \)

\[X = \text{All totally acyclic complexes.} \]

Subcategory of \(K(\text{Proj}) \)

\[X = \text{The subcategory of } K(\text{Proj}) \text{ whose class of objects is } X. \]
Module category

- Facts on flat modules, countably generated, etc.

Homotopy category

- Neeman: $K(Proj)$ is $\mathcal{A}$$_1$-compactly generated

Schori-Stovicek

- A is deconstructible \implies $K(A)$ is coreflective

Every flat and Proj-periodic module is projective

Neeman

Some results in $K(Proj)$

Jørgensen

\mathcal{X} is coreflective

Every module has a GP-precover.
OBJECTIVE OF THE TALK

Show recent results in this flavour

a) Study homotopy categories of N-complexes
 CI, Torrecillas, BMMS, 2023

b) Give new conditions that implies X is
 coreflective in $\mathbf{K(Proj)}$
 CI, Sci. Chin. Math, 2023

\[\Downarrow\]

Every module has a GP-precover by
Jorgensen’s result.
2. Homotopy Categories of N-complexes

Fix $N \in \mathbb{N}$, $N \geq 2$

Category of N-complexes $X : C_N(R)$

- Objects: $\rightarrow X \xrightarrow{d_{n-1}} X \xrightarrow{d_n} X \xrightarrow{d_{n+1}} \cdots \xrightarrow{d_n \cdots d_{n-N+n}} = 0$

- Morphisms: Cochain maps.

Homotopy category of an additive subcategory $\mathcal{A} : K_N(A)$

- Objects: N-complexes in \mathcal{A}

- Morphisms: Homotopy equivalence classes
HOMOTOPY EQUIVALENCE

If $x, y \in C_n(R)$ and $f, g: X \to Y$ then

$f \sim g \iff \exists s^n: X \to Y$ such that

$$f^n - g^n = \sum_{j=0}^{N-1} d_Y^j s^{i+N-j-1} d_X^{N-j-1}$$

Case $N = 3$

$$f^n - g^n = d_{u-1} d_{u+1} u + d_u s d + s d u$$

Diagram:

- X^{u-2} to X^{u-1}
- X^u to X^{u+1}
- X^{u+2}
- Y^{u-2} to Y^{u-1}
- Y^u to Y^{u+1}
- Y^{u+2}
2.1. COREFLECTIVE SUBCATEGORIES OF $\mathbf{K}_n (\text{Mod-R})$

Question: How can we construct coreflective subcategories of $\mathbf{K}_n (\text{Mod-R})$?

Following Saorín-Stovicek

- We take a deconstructible class $\mathcal{A} = 1 - R$
- Construct subcategories of $\mathbf{K} (\text{Mod-R})$
 - $\mathbf{K}(\mathcal{A})$ (Remember: N-complexes from \mathcal{A})
 - $E(\mathcal{A})$: N-acyclic complex from \mathcal{A}
N-ACYCLIC COMPLEXES

X is N-acyclic if all N-homology modules vanish.

Case $N = 3$

Given an N-complex

$$
X \xrightarrow{d} X \xrightarrow{d} X \xrightarrow{d} X
$$

$d^u d^{u-1} d^{u-2} = 0 \Rightarrow \text{Im} d^{u-2} d^{u-1} \subseteq \text{Ker} d^u$

$d^{u+1} d^u d^{u-1} = 0 \Rightarrow \text{Im} d^{u-1} \subseteq \text{Ker} d^{u+1} d^u$

X is N-acyclic if $\text{Im} d^{u-2} d^{u-1} = \text{Ker} d^u$ and $\text{Im} d^{u-1} = \text{Ker} d^{u+1} d^u$
2.1. Coreflective Subcategories

Theorem

If $A \subseteq \text{Mod-}R$ is decostructible $\Rightarrow K(A) \text{ and } E(A)$ are coreflective subcategories of $\mathcal{K}(\text{Mod-}R)$

Proof

1. A decostructible \Rightarrow $C(A)$ and $E(A)$ are decostructible in $\mathcal{C}(R)$
2. \Rightarrow $C(A)$ and $E(A)$ are precovering in $\mathcal{C}(R)$
3. \Rightarrow $K(A)$ and $E(A)$ are coreflective in $\mathcal{K}(\text{Mod-}R)$
2.1. Coreflective Subcategories

1. \(C(A) \) and \(E(A) \) are deconstructible.

If \(X \in C(A) \), we have to find some filtration of \(X \)

\[
\left(X_{\alpha} \mid \alpha < \kappa \right)
\]

\(X_0 : \ldots \to X_0^{n-1} \to X_0^n \to X_0^{n+1} \to \ldots \)

\(X_1 : \ldots \to X_1 \to X_1^n \to X_1^{n+1} \to \ldots \)

\(X_1 : \ldots \to X_1^{n-1} \to X_1^n \to X_1^{n+1} \to \ldots \)

Belonging to some set of complexes.

Deconstruction

Hill's lemma
2.1. Coreflective Subcategories

(2) $C^x(A)$ and $E^x(A)$ are precovering.

Theorem (Ershov, Saorín-Strickson)

Every deconstructible class is precovering.

Precovering class \mathcal{X} in a category C

For every $C \in C$ exists a morphism $\eta : X \to C$ with

a) $X \in \mathcal{X}$

b) Lifting property

$\eta \circ f = \eta$

\[X \xrightarrow{\eta} C \]

\[f \]

\[X' \in \mathcal{X} \]
2.1. Coreflective Subcategories

$K_n(A)$ and $E_n(A)$ are coreflective in $K_n(Mod-R)$

3.1 $K_n(A)$ and $E_n(A)$ are precovering in $K_n(Mod-R)$

Theorem (Cortés-Izurdiaga-Crivici-Saorín, 2022)

If $A \subseteq C$ is a subcategory of an additive category with split idempotents, then A is coreflective if and only if:

a) A is precovering.

b) A is closed under direct summands.

c) Every morphism in A has a pseudocokernel in C which belongs to A.
2.2. $\mathcal{K}_n(\text{Proj})$ is χ_1-compactly generated.

Theorem

$\mathcal{K}_n(\text{Proj})$ is χ_1-compactly generated.

Proof

The proof uses deconstruction and Hilbert lemma but with some particularities.

A proj is more than deconstructible: decomposable.

Kaplansky's Theorem

$P \in \text{Proj} \Rightarrow P = \bigoplus_{i=1}^{\infty} P_i$ with P_i countably generated
2.2. $K_n(Proj)$ is \aleph_1-compactly generated

b) $C_{n}(Proj)$ is more than deconstructible

If $X \in C_{n}(Proj)$, then the filtration $(X_{a} | a \in k)$

\[
\begin{align*}
X_0 : & \quad \ldots \rightarrow X_0 \rightarrow X_0 \rightarrow X_0 \rightarrow \ldots \\
X_1 : & \quad \ldots \rightarrow X_1 \rightarrow X_1 \rightarrow X_1 \rightarrow \ldots \\
X_2 : & \quad \ldots \rightarrow X_2 \rightarrow X_2 \rightarrow X_2 \rightarrow \ldots \\
X_n : & \quad \ldots \rightarrow X_n \rightarrow X_n \rightarrow X_n \rightarrow \ldots \\
\end{align*}
\]

\[\xrightarrow{\text{split+}}\] morph.

\[\xrightarrow{\text{split+}}\] epim.

\[\text{countably generated projective}\]
Splitting Morphisms

Split Monomorphism

\[M \xrightarrow{f} N \]

\[sf(x) = x, \forall x \in M \]

\[sf = 1_M \]

Split Epimorphism

\[M \xrightarrow{f} N \]

\[fs(x) = x, \forall x \in N \]

\[fs = 1_N \]
3. Existence of GP-Precovers

- We work in $K(\text{Proj})$ and consider $K = \mathcal{X} \subseteq K(\text{Proj})$
- where \mathcal{X} are the totally acyclic complexes.

Remember

\[\cdots \rightarrow X^{n-1} \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1} \rightarrow \cdots \]

- X^n is projective
- Acyclic: $\ker d^n = \text{Im} d^{n-1}$
- Totally acyclic

\[X^{n-1} \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1} \]

$P \in \text{Proj}, f d^n = 0$
3. Existence of GP-Precovers

Class of morphisms Morf_K

- Take a morphism $f: X \to Y$ in $K(\text{Proj})$.
- By the axioms of triangulated categories

\[
X \xrightarrow{f} Y \to Z \to \Sigma X
\]

- Then $f \in \text{Morf}_K \iff Z \in K$.

Relevance of Morf_K

It allows to define the Verdier quotient

\[
K(\text{Proj})/K
\]
3. EXISTENCE OF GP-PRECOVERS

Theorem

If Mor_K satisfies the generalized Baer lemma in $K(\text{Proj})$, then there exists GP-precovers in Mod-R.

Mor$_K$-injective objects

$X \in K(\text{Proj})$ is Mor$_K$-injective if

\[
\begin{array}{c}
\begin{array}{c}
A \rightarrow B \in \text{Mor}_K \\
\downarrow g \\
X \rightarrow X
\end{array}
\end{array}
\]

then $h \circ f = g$.
3. Existence of GP-Prelowers

Generalized Baer Lemma

A Mor Y satisfies the generalized Baer lemma if there is a set N ⊆ Mor Y (not a class!) such that

\[X \text{ is } Mor Y \text{-injective} \iff X \text{ is } N \text{-injective} \]

Example

- \(M \in \text{Nod-}R \) is injective \(\iff \) any monomorphism

- Classical Baer lemma

 \(M \) is injective \(\iff \) \(M \) is \(N \)-injective

\[N \parallel_1 \text{ Monomorphisms } f: I \to R \]
3. EXISTENCE OF GP-PRECOVERS

Theorem (CI-Guich-Kalebger-Srivastava, 2020)

If $(C; E)$ is an exact category satisfying certain conditions such that the class of injections satisfy the Generalized Baer Lemma, then $(C; E)$ has enough injectives.
3. **Existence of GP-Precovers**

Theorem

If M is a module satisfying the generalized Baer lemma in $K(\text{Proj})$, then there exists GP-precovers in Mod-R.

Proof

a) The Verdier quotient $K(\text{Proj})/K$ has small hom-sets.

b) K is coreflective in $K(\text{Proj})$.

Using results from triangulated categories.

C) There exist GP-precovers.

By Jorgensen's result.
3. Existence of GP-precovers

a) The Verdier quotient $K(\text{Proj})/K$ has small hom-sets.

- The category $K(\text{Proj})/K$
- Objects: $K(\text{Proj})$
- Morphisms between X and Y
 Equivalent classes of triples (Z,f,g)

$$\exists \text{Hom}_{K}$$

It need not be a set!
REFERENCES

Thank you very much!