Generalized Gorenstein projective and flat modules

Alina Iacob

Department of Mathematical Sciences
Georgia Southern University

November 2020
Outline

1. Motivation

2. FP_n-injective and FP_n-flat modules

3. Gorenstein FP_n-projective modules

4. Gorenstein \mathcal{B}-flat modules

5. The Gorenstein \mathcal{B}-flat stable model category
Based on the following papers:
Definition

We say that a module $G \in Mod(R)$ is **Gorenstein projective** if there is an exact complex of projective modules

$$P = \ldots \rightarrow P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} P_{-1} \rightarrow \ldots$$

such that $G = Z_0(P)$ and such that the complex stays exact when applying a functor $\text{Hom}(-, T)$, where T is any projective module (i.e. the complex $\ldots \rightarrow \text{Hom}(P_{-1}, T) \rightarrow \text{Hom}(P_0, T) \rightarrow \text{Hom}(P_1, T) \rightarrow \ldots$ is exact for any projective module T).

Any projective module P is Gorenstein projective ($0 \rightarrow P \xrightarrow{\text{Id}} P \rightarrow 0$)

Definition

We say that a module $M \in Mod(R)$ is **Gorenstein flat** if there is an exact complex of flat modules $F = \ldots \rightarrow F_1 \rightarrow F_0 \rightarrow F_{-1} \rightarrow \ldots$ such that $M = Z_0(F)$ and such that the complex stays exact when applying a functor $A \otimes -$, where A is any injective module (i.e. the complex $\ldots \rightarrow A \otimes F_1 \rightarrow A \otimes F_0 \rightarrow A \otimes F_{-1} \rightarrow \ldots$ is exact for any injective module A).
A homomorphism $\phi : G \to M$ is a **Gorenstein projective precover** of M if G is Gorenstein projective and if for any Gorenstein projective module G' and any $\phi' \in Hom(G', M)$ there exists $u \in Hom(G', G)$ such that $\phi' = \phi u$.

\[
\begin{array}{ccc}
 & G' & \\
 \downarrow{u} & \downarrow{h} & \\
 G & \rightarrow & M
\end{array}
\]

A precover $g : G \to M$ is said to be a **cover** if any homomorphism $u : G \to G$ such that $gu = g$, is an isomorphism.

A Gorenstein projective resolution of a module M is a complex

\[
\ldots \rightarrow G_1 \xrightarrow{g_1} G_0 \xrightarrow{g_0} M \rightarrow 0
\]

such that $G_0 \to M$ and each $G_i \to Ker(G_{i-1} \to G_{i-2})$ for $i \geq 1$ are Gorenstein projective precovers.
Open question: the existence of the Gorenstein projective resolutions. Generalizations of the Gorenstein modules - the Ding projective modules

- The Ding projective modules are the cycles of the exact complexes of projective modules that remain exact when applying a functor $\text{Hom}(\cdot, F)$, with F any flat module.

Open question: is the class of Ding projectives, \mathcal{DP}, precovering over any ring?
FP_n-injective and FP_n-flat modules

Definition

A module M is \emph{n-finitely presented} (FP_n for short) if there exists an exact sequence $F_n \to F_{n-1} \to \ldots \to F_1 \to F_0 \to M \to 0$ with each F_i finitely generated free. A module M is FP_∞ if and only if $M \in$ FP_n for all $n \geq 0$.

$FP_0 \supseteq FP_1 \supseteq \ldots \supseteq FP_n \supseteq FP_{n+1} \supseteq \ldots \supseteq FP_\infty$, with FP₀ the class of all finitely generated modules, and FP₁ the finitely presented modules. A module M is FP_n-injective if $\text{Ext}_R^1(F, M) = 0$ for all $F \in$ FP_n. From the definition, we get the following ascending chain:

$$\text{Inj} = \mathcal{IF}_0 \subseteq \mathcal{IF}_1 \subseteq \ldots \subseteq \mathcal{IF}_\infty.$$

A module N is FP_n-flat if $\text{Tor}_1(F, N) = 0$ for all $F \in$ FP_n. From the definition, we get the following ascending chain:

$$\text{Flat} = \mathcal{IF}_0 = \mathcal{IF}_1 \subseteq \mathcal{IF}_2 \subseteq \ldots \subseteq \mathcal{IF}_\infty.$$
Definition

A module G is Gorenstein FP_n-projective if it is a cycle in an exact complex of projective modules that remains exact when applying a functor $Hom(-, L)$ for any $L \in \mathcal{F}\mathcal{F}_n$. \mathcal{GP}_n denotes the class of Gorenstein FP_n-projective modules.

We use \mathcal{GP}_n to denote the class of Gorenstein \mathcal{FP}_n-projective modules.
- Since $\mathcal{F}\mathcal{F}_1 = Flat$, $\mathcal{GP}_1 = \mathcal{DP}$ (the Ding projective modules).
- And $\mathcal{F}\mathcal{F}_\infty = Level$, so $\mathcal{GP}_\infty = \mathcal{GP}_{ac}$ (the Gorenstein AC-projective modules).

By definition we have an ascending chain

$$\mathcal{GP}_\infty = \mathcal{GP}_{ac} \subseteq \cdots \subseteq \mathcal{GP}_2 \subseteq \mathcal{GP}_1 = \mathcal{DP} \subseteq \mathcal{GP}.$$

Main result for Gorenstein FP_n-projective modules:

Theorem A: Let R be any ring. For any $n \geq 2$, \mathcal{GP}_n is a precovering class.
A sufficient condition for a class \(C \) be precovering is to be the left half of a complete cotorsion pair.

Recall \(C^\perp = \{ M, \text{Ext}^1(C, M) = 0, \text{for all } C \in C \} \)
and \(\perp C = \{ L, \text{Ext}^1(L, C) = 0, \text{for all } C \in C \} \)

- A pair \((C, \mathcal{L})\) is a cotorsion pair if \(C^\perp = \mathcal{L} \) and \(\perp \mathcal{L} = C \).
- A cotorsion pair \((C, \mathcal{L})\) is complete if for every \(M \) there are short exact sequences \(0 \to L \to C \to M \to 0 \) and \(0 \to M \to L' \to C' \to 0 \) with \(C, C' \in C \) and with \(L, L' \in \mathcal{L} \).

A cotorsion pair \((C, \mathcal{L})\) is hereditary if \(\text{Ext}^i(C, L) = 0 \) for any \(C \in C \), any \(L \in \mathcal{L} \), all \(i \geq 1 \).

Examples: \((\text{Proj}, \text{Mod})\), \((\text{Mod}, \text{Inj})\).
Known: for $n \geq 2$, $M \in \mathcal{FF}_n \Leftrightarrow M^+ \in \mathcal{FI}_n$ (where $M^+ = \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z})$) and $C \in \mathcal{FI}_n \Leftrightarrow C^+ \in \mathcal{FF}_n$.

So, for $n \geq 2$, $(\mathcal{FI}_n, \mathcal{FF}_n)$ is a duality pair in the sense of Bravo - Gillespie - Hovey.

Theorem

(Bravo - Gillespie - Hovey) Let R be a ring and suppose $(\mathcal{C}, \mathcal{D})$ is a duality pair such that \mathcal{D} is closed under pure quotients. Let P be a complex of projective modules. Then $A \otimes P$ is exact for all $A \in \mathcal{C}$ if and only if $\text{Hom}(P, N)$ is exact for all $N \in \mathcal{D}$.

Proposition

A module M is Gorenstein FP_n-projective if and only if there is an exact complex of projective modules $P = \ldots \rightarrow P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} P_{-1} \rightarrow \ldots$ such that $M = Z_0(P)$ and such that $A \otimes P$ is exact for all $A \in \mathcal{FI}_n$.
More general:

Definition

Let \mathcal{B} be a fixed class of right R-modules. We say that a module M is projectively coresolved Gorenstein \mathcal{B}-flat if $M = Z_0(P)$ for some $B \otimes -$-acyclic and exact complex P of projective modules.

- $\mathcal{PGF}_\mathcal{B}$ denotes the class of projectively coresolved Gorenstein \mathcal{B}-flat modules.

Question: When is $\mathcal{PGF}_\mathcal{B}$ precovering?
- A class of modules \mathcal{D} is *definable* if it is closed under direct products, direct limits and pure submodules.

$(X$ is a pure submodule of Y if there is a pure short exact sequence \[\rho: 0 \rightarrow X \rightarrow Y \rightarrow Y/X \rightarrow 0 \]

i.e. an exact sequence such that the induced sequence \[\text{Hom}_G(L, \rho): 0 \rightarrow \text{Hom}_G(L, X) \rightarrow \text{Hom}_G(L, Y) \rightarrow \text{Hom}_G(L, X/Y) \rightarrow 0 \]

in Ab is exact for every finitely presented module L).

- The definable closure of \mathcal{B}, $< \mathcal{B} >$, is the smallest definable class containing \mathcal{B}.

- An *elementary cogenerator* of a definable class \mathcal{D} is a pure-injective module $D_0 \in \mathcal{D}$ such that every $D \in \mathcal{D}$ is a pure submodule of some product of copies of D_0.

Here, *pure-injective* means injective with respect to pure exact sequences.

Definition

We say that a class \mathcal{B} is **semi-definable** if it is closed under products and contains an elementary cogenerator of its definable closure.
Theorem

(joint with Estrada and Perez) If \mathcal{B} is a semi-definable class of right R-modules then $(\mathcal{PGF}_\mathcal{B}, \mathcal{PGF}_\mathcal{B}^{\perp})$ is a complete hereditary cotorsion pair. In particular, the class $\mathcal{PGF}_\mathcal{B}$ is precovering.

Since for any $n > 1$ the class of \mathcal{FP}_n-injective modules, \mathcal{FI}_n, is definable (so semi-definable also), and since $\mathcal{GP}_n = \mathcal{PGF}_{\mathcal{FI}_n}$, we obtain:

Theorem

(Theorem A) Let $n \geq 2$. The class of generalized Gorenstein \mathcal{FP}_n-projective modules, \mathcal{GP}_n, is precovering.
Case $n = 1$

Lemma

$\mathcal{PGF} = \mathcal{DP} \cap \mathcal{GF}$.

Corollary

Over any ring R, $\mathcal{PGF} = \mathcal{DP}$ if and only if $\mathcal{DP} \subseteq \mathcal{GF}$.

Proposition

The Gorenstein flat dimension of a Ding projective module is either zero or infinite.

Proposition

The following are equivalent:

1. $\mathcal{DP} = \mathcal{PGF}$
2. Every Ding projective module has finite Gorenstein flat dimension.

Proposition

If R has finite left weak Gorenstein global dimension then $\mathcal{DP} = \mathcal{PGF}$.
Theorem

Let R be any ring. The following are equivalent:

1. $\mathcal{DP} \subseteq \mathcal{GF}$.
2. $\mathcal{DP} = \mathcal{PGF}$
3. For any Ding projective module M, its character module, M^+, is Gorenstein injective.
4. The class Inj^+ of all character modules of injective right R-modules, is contained in \mathcal{DP}^\perp.

Theorem

Let R be a right coherent ring. Then $\mathcal{DP} = \mathcal{PGF} = \mathcal{GP}_{ac}$
The coherence is a sufficient condition, but it is not a necessary condition on the ring. If R has finite global dimension (but it is not coherent) then $\mathcal{DP} = \mathcal{PGF}$.

Example. The ring

$$R = \begin{bmatrix} \mathbb{Q} & \mathbb{Q} & R \\ 0 & \mathbb{Q} & R \\ 0 & 0 & \mathbb{Q} \end{bmatrix} / \begin{bmatrix} 0 & 0 & R \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

is noncoherent of finite global dimension. So, $\mathcal{DP} = \mathcal{PGF}$ over R.
Let \mathcal{B} be a class of right R-modules. We say that a module $M \in Mod(R)$ is **Gorenstein \mathcal{B}-flat** if $M = Z_0(F)$ for some $(\mathcal{B} \otimes_R -)$-acyclic and exact complex F of flat modules.

1. Gorenstein flat modules are obtained when $\mathcal{B} = \mathcal{I}nj$. If $\mathcal{B} \supseteq \mathcal{I}nj$ then any Gorenstein \mathcal{B}-flat module is, in particular, a Gorenstein flat module.

2. Recall that a module $M \in Mod(R)$ is **of type FP_∞** if there exists an exact sequence

$$
\cdots \to P_1 \to P_0 \to M \to 0
$$

with P_k finitely generated and projective for every $k \geq 0$. When $\mathcal{B} = \mathcal{F}\mathcal{I}_\infty = \mathcal{A}\mathcal{C} = (\mathcal{F}\mathcal{P}_\infty) \perp$ we obtain the class $\mathcal{G}\mathcal{F}_{\mathcal{A}\mathcal{C}}(R)$ of **Gorenstein $\mathcal{A}\mathcal{C}$-flat modules**.
Properties of Gorenstein AC-flat modules
1. \mathcal{GF}_{AC} is a precovering class over any ring R.
2. If \mathcal{GF}_{AC} is closed under extensions then $\mathcal{GF}_{AC}(R)$ is a covering class.

Remark. Our new results show that Gorenstein AC-flat modules are always closed under extensions, and so the latter two properties hold for any ring R.
Properties of Gorenstein \mathcal{B}-flat modules

Lemma

Let \mathcal{B} be a class of right R-modules. Then, the class $\mathcal{GF}_\mathcal{B}$ of Gorenstein \mathcal{B}-flat modules is a precovering class.

Proposition

If the class $\mathcal{GF}_\mathcal{B}$ of Gorenstein \mathcal{B}-flat modules is closed under extensions, then it is closed under taking kernels of epimorphisms and under direct limits. As a consequence, $\mathcal{GF}_\mathcal{B}$ is a covering class.

Proposition

If $\mathcal{GF}_\mathcal{B}$ is closed under extensions, then the pair $(\mathcal{GF}_\mathcal{B}, \mathcal{GC}_\mathcal{B})$ is a complete and hereditary cotorsion pair in $\text{Mod}(R)$, where $\mathcal{GC}_\mathcal{B}$ be the right orthogonal class $\mathcal{GF}_\mathcal{B}^\perp$.

Question: When is the class $\mathcal{GF}_\mathcal{B}$ closed under extensions?

We show that for any semi-definable class \mathcal{B} we have $\mathcal{GF}_\mathcal{B} = \perp (\mathcal{C} \cap \mathcal{PGF}_\mathcal{B}^\perp)$, and so $\mathcal{GF}_\mathcal{B}$ is closed under extensions.
We use:

Lemma

The following are equivalent for any R-module M and any class of right R-modules \mathcal{B}:

(a) M is Gorenstein \mathcal{B}-flat.

(b) $\text{Tor}_i(B, M) = 0$ for all $i \geq 1$ and $B \in \mathcal{B}$, and there exists an exact and $(B \otimes \cdot)$-acyclic sequence of modules $0 \to M \to F^0 \to F^1 \to \ldots$ where each F^i is flat.

(c) There exists a short exact sequence of modules $0 \to M \to F \to G \to 0$ where F is flat and G is Gorenstein \mathcal{B}-flat.
Theorem

Let \mathcal{B} be a semi-definable class of right R-modules. Then, the following conditions are equivalent for every $M \in \text{Mod}(R)$:

(a) M is Gorenstein \mathcal{B}-flat.

(b) There is a short exact sequence of modules

$$0 \to F \to L \to M \to 0$$

with $F \in \text{Flat}$ and $L \in \text{PGF}_\mathcal{B}$, which is also $\text{Hom}_R(-, C)$-acyclic, for any cotorsion module C.

(c) $\text{Ext}^1_R(M, C) = 0$ for every $C \in \mathcal{C} \cap \text{PGF}^\perp_\mathcal{B}$.

(d) There is a short exact sequence of modules

$$0 \to M \to F \to L \to 0$$

with $F \in \text{Flat}$ and $L \in \text{PGF}_\mathcal{B}$.
(a) \(M \) is Gorenstein \(\mathcal{B} \)-flat.
(b) There is a short exact sequence of modules

\[0 \to F \to L \to M \to 0 \]

with \(F \in \mathcal{F}l_{\mathcal{B}} \) and \(L \in \mathcal{PGF}_{\mathcal{B}} \), which is also \(\text{Hom}_{\text{R}}(-, C) \)-acyclic, for any cotorsion module \(C \).

Proof of (a) \(\Rightarrow \) (b) \(M = Z_0(F) \), \(F \) an acyclic complex of flat modules, that is \(B \otimes - \) exact.

\((\text{dw}(\text{Proj}), (\text{dwProj})^\perp)\) is complete \(\Rightarrow \) exact \(0 \to G \to P \to F \to 0 \), \(P \in \text{dw}(\text{Proj}) \), \(G \in (\text{dwProj})^\perp \).

Then \(G \) is flat.

\(F \) and \(G \) are \(\mathcal{B} \otimes - \) exact, so \(P \) is \(\mathcal{B} \otimes - \) exact.

Exact sequence \(0 \to Z_iG \to Z_iP \to Z_iF \to 0 \) with \(Z_iG \) flat, and \(Z_iP \in \mathcal{PGF}_{\mathcal{B}} \).
If C is a cotorsion module, both g and h are C-injective, so f is also C-injective.
(b) There is a short exact sequence of modules

\[0 \to F \to L \to M \to 0 \]

with \(F \in \text{Flat} \) and \(L \in \text{PGF}_B \), which is also \(\text{Hom}_R(\cdot, C) \)-acyclic, for any cotorsion module \(C \).

(c) \(\text{Ext}^1_R(M, C) = 0 \) for every \(C \in \mathcal{C} \cap \text{PGF}^\perp_B \).

Proof of (b) \(\Rightarrow \) (c) Consider a short exact sequence as in (b).

\[0 \to F \to L \to M \to 0 \]

Let \(C \in \mathcal{C} \cap (\text{PGF}_B)^\perp \). We have an exact sequence

\[\text{Hom}_R(L, C) \xrightarrow{\varphi} \text{Hom}_R(F, C) \to \text{Ext}^1_R(M, C) \to \text{Ext}^1_R(L, C) \]

where \(\text{Ext}^1_R(L, C) = 0 \) since \(L \in \text{PGF}_B \), and \(\varphi \) is epic. Hence, \(\text{Ext}^1_R(M, C) = 0 \).
(c) $\Ext_R^1(M, C) = 0$ for every $C \in \mathcal{C} \cap \mathcal{PGF}_B^\perp$.

(d) There is a short exact sequence of modules

$$0 \to M \to F \to L \to 0$$

with $F \in \mathcal{Flat}$ and $L \in \mathcal{PGF}_B$.
(c) ⇒ (d): Consider a short exact sequence

\[0 \to M \to U \to T \to 0 \]

with \(U \in \mathcal{PGF}_B^\perp \) and \(T \in \mathcal{PGF}_B \). Let \(C \in \mathcal{PGF}_B^\perp \) be a cotorsion module. Then, we have an exact sequence

\[Ext^1_R(T, C) \to Ext^1_R(U, C) \to Ext^1_R(M, C) \]

where \(Ext^1_R(T, C) = 0 \) and \(Ext^1_R(M, C) = 0 \). Then, \(U \in \perp (C \cap \mathcal{PGF}_B^\perp) \). Then \(U \) has a pure special \(\mathcal{PGF}_B \)-precovers.

- pure exact sequence

\[0 \to K \to L \to U \to 0 \]

with \(K \in \mathcal{PGF}_B^\perp \) and \(L \in \mathcal{PGF}_B \).

Then, \(L \in \mathcal{PGF}_B \cap (\mathcal{PGF}_B)^\perp \), so \(L \) is projective.

Then \(U \) is a pure epimorphic image of a projective module, so \(U \in \mathcal{F}lat \). (d) ⇒ (a): Follows from the Lemma above.
Corollary

If \(B \) is semi-definable then \(GF_B \) is closed under extensions.

Examples:
1. The class of Gorenstein flat modules is the left half of a complete hereditary cotorsion pair.
2. Consider the class \(GF_{AC} \) of Gorenstein AC-flat modules. The class \(AC \) of absolutely clean right \(R \)-modules is semi-definable. Hence, we have the following properties for Gorenstein AC-flat modules:
 - \((GF_{AC}, (GF_{AC})^\perp) \) is a complete hereditary cotorsion pair.
 - Every module has a Gorenstein AC-flat cover.
Example 3. Consider the class \mathcal{FI}_n of FP_n-injective right R-modules defined by Bravo-Perez. Recall that this class is the right orthogonal complement of that of the right R-modules of type FP_n, that is, those N for which there is an exact sequence

$$P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow N \rightarrow 0$$

where P_k is finitely generated and projective for every $0 \leq k \leq n$. By Bravo-Perez, \mathcal{FI}_n is a definable class if $n > 1$. Thus, if $\mathcal{GF}_{\mathcal{FI}_n}$ denotes the class of Gorenstein \mathcal{FI}_n-flat modules, we have that $\mathcal{GF}_{\mathcal{FI}_n}$ is closed under extensions. As a consequence of the previous results, we have that $(\mathcal{GF}_{\mathcal{FI}_n}, (\mathcal{GF}_{\mathcal{FI}_n})^{\perp})$ is a complete hereditary cotorsion pair.
All the results in this section are joint with S. Estrada and M. Perez

The Gorenstein \mathcal{B}-flat stable model category

Given two complete and hereditary cotorsion pairs $(\mathcal{Q}, \mathcal{R}')$ and $(\mathcal{Q}', \mathcal{R})$ in an abelian category \mathcal{C} such that $\mathcal{Q}' \subseteq \mathcal{Q}$, $\mathcal{R}' \subseteq \mathcal{R}$ and $\mathcal{Q}' \cap \mathcal{R} = \mathcal{Q} \cap \mathcal{R}'$, then there exists a subcategory $\mathcal{W} \subseteq \mathcal{C}$ such that $(\mathcal{Q}, \mathcal{W}, \mathcal{R})$ is a Hovey triple in \mathcal{C}, that is:

1. $(\mathcal{Q}, \mathcal{R} \cap \mathcal{W})$ and $(\mathcal{Q} \cap \mathcal{W}, \mathcal{R})$ are complete cotorsion pairs in \mathcal{C}.
2. \mathcal{W} is *thick*: it is closed under extensions, kernels of epimorphisms and cokernels of monomorphisms between its objects.

By Hovey’s correspondence, the existence of such a triple $(\mathcal{Q}, \mathcal{W}, \mathcal{R})$ implies the existence of a unique abelian model structure on \mathcal{C} such that:

1. \mathcal{Q} is the class of cofibrant objects.
2. \mathcal{R} is the class of fibrant objects.
Let \mathcal{B} be a class of modules that contains the injective right R-modules. We show it is possible to apply the previous result in the setting where:

$Q := \mathcal{GF}_B(R),$

$Q' := \mathcal{Flat}$ the class of flat left R-modules,

$\mathcal{R} := \mathcal{C} = (\mathcal{Flat})^\perp$ the class of cotorsion left R-modules,

$\mathcal{R}' := \mathcal{GC}_B,$

provided that $\mathcal{GF}_B(R)$ is closed under extensions (for instance if \mathcal{B} is a semi-definable class).
Proposition (compatibility between the flat and Gorenstein \mathcal{B}-flat cotorsion pairs)

If $\mathcal{GF}_\mathcal{B}$ is closed under extensions and \mathcal{B} contains all injective right R-modules, then

$$\mathcal{Flat} \cap \mathcal{C} = \mathcal{GF}_\mathcal{B} \cap \mathcal{GC}_\mathcal{B}$$

Proof. (\supseteq). Let $M \in \mathcal{GF}_\mathcal{B} \cap \mathcal{GC}_\mathcal{B}$. Then $M \in \mathcal{C}$. Since M is Gorenstein \mathcal{B}-flat, we have a short exact sequence

$$0 \to M \to F \to M' \to 0$$

with F flat, M' is Gorenstein \mathcal{B}-flat. This sequence splits, since M is Gorenstein \mathcal{B}-cotorsion, so $Ext^1(M', M) = 0$. Hence, M is a direct summand of F, so $M \in \mathcal{Flat}$.
Let \(N \in \mathcal{F} \cap \mathcal{C} \). Then \(N \in \mathcal{GF}_\mathcal{B} \). Since \((\mathcal{GF}_\mathcal{B}, \mathcal{GC}_\mathcal{B})\) is complete, there is a short exact sequence

\[
0 \to N \to C \to F \to 0
\]

with \(C \in \mathcal{GC}_\mathcal{B} \) and \(F \in \mathcal{GF}_\mathcal{B} \). Since \(N \) and \(F \) are Gorenstein \(\mathcal{B} \)-flat and \(\mathcal{GF}_\mathcal{B} \) is closed under extensions, we have that \(C \in \mathcal{GF}_\mathcal{B} \cap \mathcal{GC}_\mathcal{B} \subseteq \mathcal{F} \cap \mathcal{C} \). It follows that \(F \) is a Gorenstein flat module with finite flat dimension, and so \(F \) is flat. Then \(\text{Ext}^1(F, N) = 0 \) since \(N \) is cotorsion, and so the previous exact sequence splits. It follows that \(N \) is a direct summand of \(C \in \mathcal{GC}_\mathcal{B} \), and hence \(N \in \mathcal{GC}_\mathcal{B} \).
Thus we have:

Theorem (the Gorenstein \mathcal{B}-flat model structure in $\text{Mod}(R)$)

Assume $\mathcal{G}\mathcal{F}_\mathcal{B}$ is closed under extensions and \mathcal{B} contains all injective right R-modules. Then, there exists a unique abelian model structure on $\text{Mod}(R)$ such that $\mathcal{G}\mathcal{F}_\mathcal{B}$ is the class of cofibrant objects.

Corollary (the Gorenstein flat model structure over arbitrary rings)

Over any ring R there exists a unique abelian model structure on $\text{Mod}(R)$ such that $\mathcal{G}\mathcal{F}$ is the class of cofibrant objects.
Corollary

If \mathcal{B} is a semi-definable class of right R-modules that contains the injectives, then, there exists a unique abelian model structure on $\text{Mod}(R)$ such that $\mathcal{GF}_\mathcal{B}$ is the class of cofibrant objects, \mathcal{C} is the class of fibrant objects, and $\mathcal{PGF}_{\mathcal{B}}$ is the class of trivial objects.
References: