Interpretation Functors II

Lorna Gregory

January 2021

Università della Campania
Let R be a ring. A **pp-n-formula** (over R) is a formula

$$\varphi(\overline{x}) := \exists \overline{y} \ (\overline{x} \ \overline{y})A = 0$$

where A is an $(n + m) \times l$ matrix with entries in R, \overline{x} an n-tuple of variables and \overline{y} an m-tuple of variables. Write pp_R^n for the set of pp-n-formulae over R.

For M an R-module and $\varphi \in \text{pp}_R^n$, we write $\varphi(M)$ for the solution set of φ in M.

A full subcategory $\mathcal{D} \subseteq \text{Mod-}R$ is called a **definable subcategory** if it is the form

$$\mathcal{D} = \{ M \in \text{Mod-}R \mid \varphi_i(M) = \psi_i(M) \text{ for all } i \in I \}$$

where φ_i, ψ_i are pairs of pp-formulae indexed by I.
Interpretation functors

Definition
Let R, S be rings and \mathcal{D} a definable subcategory of $\text{Mod}-S$. Suppose that φ, ψ are pp-n-formulae over S and that for each $r \in R$, $\rho_r(\overline{x_1}, \overline{x_2})$ is a pp-$2n$-formula in variables $\overline{x_1}, \overline{x_2}$ each of length n.

Suppose that for all $M \in \mathcal{D}$ the following hold:

1. $\varphi(M) \supseteq \psi(M)$
2. for all $r \in R$, $\rho_r(\overline{x_1}, \overline{x_2})$ defines an endomorphism ρ^M_r of the abelian group $\varphi(M)/\psi(M)$
3. $\varphi(M)/\psi(M)$ equipped with the ρ^M_r actions is an R-module.

Then $(\varphi, \psi, (\rho_r)_{r \in R})$ defines an additive functor

$$I : \mathcal{D} \longrightarrow \text{Mod}-R, \quad M \mapsto (\varphi(M)/\psi(M), (\rho^M_r)_{r \in R}).$$

We call any such functor an interpretation functor.
Let R, S be rings.

Theorem (Krause, Prest)

Let \mathcal{D} be a definable subcategory of Mod-S. An additive functor $I : \mathcal{D} \longrightarrow \text{Mod-}R$ is an interpretation functor if and only if I commutes with direct limits and products.
Interpretation functors - Examples coming from algebra.

Let R, S be rings. Let $_RB_S$ be an R-S-bimodule.

- If B_S is finitely presented then $\text{Hom}_S(B, -) : \text{Mod}-S \to \text{Mod}-R$ is an interpretation functor.
- If $_RB$ is finitely presented then $- \otimes_R B : \text{Mod}-R \to \text{Mod}-S$ is an interpretation functor.
- If $B_S \in \text{FP}_2$ then $\text{Ext}_S(B, -) : \text{Mod}-S \to \text{Mod}-R$ is an interpretation functor.
- If $_RB \in \text{FP}_2$ then $\text{Tor}_R(B, -) : \text{Mod}-R \to \text{Mod}-S$ is an interpretation functor.

In particular, the equivalences coming from classical tilting are interpretation functors between definable subcategories.
Let R, S be rings.

Proposition

Let $I : \text{Mod-}S \rightarrow \text{Mod-}R$ be an interpretation functor such that $\langle I \text{Mod-}S \rangle = \text{Mod-}R$. There is an $n \in \mathbb{N}$ and a lattice embedding $i : \text{pp}^1_R \hookrightarrow \text{pp}^n_S$.

Reminder: An R-module M is **pure-injective** if any system of (inhomogeneous) linear equations over R, in arbitrary many variables, which is finitely solvable in M, has a solution in M.

Remark

Let $I : \text{Mod-}S \rightarrow \text{Mod-}R$ be an interpretation functor. If $M \in \text{Mod-}S$ is pure-injective then IM is pure-injective.

Theorem (G.)

Let $I : \text{Mod-}S \rightarrow \text{Mod-}R$ be an interpretation functor such that I maps finitely presented S-modules to finitely presented R-modules. If I is full on finitely presented S-modules then I is full on pure-injective S-modules.
Conjecture (Prest 80’s)

Let A be a finite-dimensional k-algebra. If A is of wild representation type then the theory of A-modules interprets the theory of $k\langle x, y \rangle$-modules.

Hence, if k is countable, A has undecidable theory of modules.

Conversely, if A is tame then the theory of A-modules is decidable.
What does “theory of A-modules” mean?

A (first order) sentence in the language of A-modules is a statement, which can be assigned a truth value, built up from homogenous linear equations over A in variables $\{x_i \mid i \in \mathbb{N}\}$, $\exists x_i$, $\forall x_i$, NOT, AND and OR.

Examples: Let $r, s \in A$.

$$\text{NOT}(\forall x_1 \exists x_2 \exists x_3 \ x_1 + x_2 \cdot r + x_3 \cdot s = 0)$$

is a sentence in the language of A-modules.

$$\forall x_1 \ \text{AND} \ x_2 \cdot r \ \text{and} \ x_1 + x_2 \cdot r = 0$$

are not sentences in the language of A-modules.

The theory of A-modules is the set of all sentences in the language of A-modules which are true in all A-modules.
From now on k is an algebraically closed field.

Definition
A finite-dimensional k-algebra \mathcal{A} is **wild** if:
there exists a **representation embedding**

$$F : \text{fin-}k\langle x, y \rangle \to \text{fin-}\mathcal{A}$$

i.e. F is an exact k-linear functor which reflects isomorphism classes and sends indecomposable modules to indecomposable modules.

Equivalently, for every finite-dimensional k-algebra B there exists a representation embedding

$$F : \text{fin-}B \to \text{fin-}\mathcal{A}.$$
Finite-dimensional algebras

Conjecture (Prest 80’s)

Let A be a finite-dimensional k-algebra. If A is of wild representation type then the theory of A-modules interprets the theory of $k\langle x, y \rangle$-modules.

Hence, if k is countable, A has undecidable theory of modules.

Conversely, if A is tame then the theory of A-modules is decidable.
Definition
A finite-dimensional k-algebra \mathcal{A} is **tame** if, for every dimension $d \in \mathbb{N}$, there is a finite number of \mathcal{A}-$k[x]$-bimodules $M_1, \ldots, M_{u(d)}$, which are finitely generated and free as $k[x]$-modules, such that almost all d-dimensional indecomposable \mathcal{A}-modules are of the form

$$M_i \otimes_{k[x]} k[x]/\langle x - \lambda \rangle$$

for some $1 \leq i \leq u(d)$ and some $\lambda \in k$.

Theorem (Drozd)

Every finite-dimensional k-algebra is either tame or wild.

Definition

Let $\mu(d)$ be the least possible value of $u(d)$ in the definition of a tame algebra. The finite-dimensional k-algebra \mathcal{A} is **tame domestic** if $\mu(d)$ is bounded.
Theorem (G., Prest)

Let \mathcal{A}, \mathcal{B} be finite-dimensional k-algebras. If $I : \text{Mod-}\mathcal{A} \to \text{Mod-}\mathcal{B}$ is a k-linear interpretation functor and $\langle I\text{Mod-}\mathcal{A} \rangle = \text{Mod-}\mathcal{B}$ then:

$\begin{align*}
\uparrow & \quad \text{if } \mathcal{A} \text{ is tame then } \mathcal{B} \text{ is tame} \\
\uparrow & \quad \text{if } \mathcal{A} \text{ is tame domestic then } \mathcal{B} \text{ is tame domestic} \\
\uparrow & \quad \text{if } \mathcal{A} \text{ is of polynomial growth then } \mathcal{B} \text{ is of polynomial growth} \\
\uparrow & \quad \text{if } \mathcal{A} \text{ is of non-exponential growth then } \mathcal{B} \text{ is of non-exponential growth}
\end{align*}$

Moreover, if \mathcal{A} is wild then there exists a k-linear interpretation functor $I : \text{Mod-}\mathcal{A} \to \text{Mod-}\mathcal{B}$ such that $\langle I\text{Mod-}\mathcal{A} \rangle = \text{Mod-}\mathcal{B}$.

Corollary

A finite-dimensional k-algebra \mathcal{A} is wild if and only if for every finite-dimensional k-algebra \mathcal{B} there is a k-linear interpretation functor $I : \text{Mod-}\mathcal{A} \to \text{Mod-}\mathcal{B}$ such that $\langle I\text{Mod-}\mathcal{A} \rangle = \text{Mod-}\mathcal{B}$.
Wild implies undecidability

A finite dimensional k-algebra A is **finitely controlled wild** if there is a representation embedding

$$F : \text{fin-}k\langle x, y \rangle \longrightarrow \text{fin-}A$$

and $C \in \text{fin-}k\langle x, y \rangle$ such that for all $N, M \in \text{fin-}k\langle x, y \rangle$

$$\text{Hom}_B(FM, FN) = F\text{Hom}(M, N) \oplus \text{Hom}(FM, FN)_C$$

where $\text{Hom}(FM, FN)_C$ is the set of maps which factor through some C^n.

Theorem (G., Prest)

Let A be a finite-dimensional k-algebra. If A is finitely controlled wild then there is a k-linear essentially surjective interpretation functor $I : \text{Mod-}A \rightarrow \text{Mod-}k\mathbb{K}_3$.

Corollary

In the above situation, the theory of A-modules interprets the theory of $k\mathbb{K}_3$-modules. In particular, if k is countable, the theory of A-Mod is undecidable.