ALGEBRAIC MODELS AND THE TANGENT CONE THEOREM

Alex Suciu

Representation Theory and Related Topics Seminar

Northeastern University

April 10, 2015

RESONANCE VARIETIES OF A CDGA

- Let $A = (A^{\bullet}, d)$ be a commutative, differential graded \mathbb{C} -algebra.
 - Multiplication $: A^i \otimes A^j \to A^{i+j}$ is graded-commutative.
 - Differential d: $A^i \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule.
- Assume
 - *A* is connected, i.e., $A^0 = \mathbb{C}$.
 - A is of finite-type, i.e., dim $A^i < \infty$ for all $i \ge 0$.
- For each $a \in Z^1(A) \cong H^1(A)$, we get a cochain complex,

$$(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u + d u$, for all $u \in A^i$.

Resonance varieties:

$$\mathcal{R}^{i}(\mathbf{A}) = \{ \mathbf{a} \in \mathcal{H}^{1}(\mathbf{A}) \mid \mathcal{H}^{i}(\mathbf{A}^{\bullet}, \delta_{\mathbf{a}}) \neq \mathbf{0} \}.$$

- Fix \mathbb{C} -basis $\{e_1, \ldots, e_n\}$ for $H^1(A)$, and let $\{x_1, \ldots, x_n\}$ be dual basis for $H_1(A) = H^1(A)^{\vee}$.
- Identify Sym(H₁(A)) with S = C[x₁,...,x_n], the coordinate ring of the affine space H¹(A).
- Define a cochain complex of free S-modules,

$$(A^{\bullet} \otimes S, \delta): \cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots,$$

where $\delta^{i}(u \otimes s) = \sum_{j=1}^{n} e_{j}u \otimes sx_{j} + du \otimes s.$

- The specialization of $A \otimes S$ at $a \in H^1(A)$ coincides with (A, δ_a) .
- The cohomology support loci *<i>R*ⁱ(A) = supp(Hⁱ(A[•] ⊗ S, δ)) are subvarieties of H₁(A).

- Let $(A_{\bullet} \otimes S, \partial)$ be the dual chain complex.
- The homology support loci *R*_i(*A*) = supp(*H*_i(*A*_• ⊗ *S*, ∂)) are subvarieties of *H*₁(*A*).
- Using a result of [Papadima-S. 2014], we obtain:

THEOREM

For each $q \ge 0$, the duality isomorphism $H^1(A) \cong H_1(A)$ restricts to an isomorphism $\bigcup_{i \le q} \mathcal{R}^i(A) \cong \bigcup_{i \le q} \widetilde{\mathcal{R}}_i(A)$.

- We also have $\mathcal{R}^i(A) \cong \mathcal{R}_i(A)$.
- In general, though, $\widetilde{\mathcal{R}}^i(A) \ncong \widetilde{\mathcal{R}}_i(A)$.
- If d = 0, then all the resonance varieties of A are homogeneous.
- In general, though, they are not.

EXAMPLE

- Let *A* be the exterior algebra on generators *a*, *b* in degree 1, endowed with the differential given by d a = 0 and $d b = b \cdot a$.
- $H^1(A) = \mathbb{C}$, generated by *a*. Set $S = \mathbb{C}[x]$. Then:

$$A_{\bullet} \otimes S: S \xrightarrow{\partial_2 = \begin{pmatrix} 0 \\ x-1 \end{pmatrix}} S^2 \xrightarrow{\partial_1 = (x \ 0)} S.$$

• Hence, $H_1(A_{\bullet} \otimes S) = S/(x-1)$, and so $\widetilde{\mathcal{R}}_1(A) = \{1\}$. Using the above theorem, we conclude that $\mathcal{R}^1(A) = \{0, 1\}$.

• $\mathcal{R}^1(A)$ is a non-homogeneous subvariety of \mathbb{C} .

•
$$H^1(A_{\bullet} \otimes S) = S/(x)$$
, and so $\widetilde{\mathcal{R}}^1(A) = \{0\} \neq \widetilde{\mathcal{R}}_1(A)$.

RESONANCE VARIETIES OF A SPACE

- Let *X* be a connected, finite-type CW-complex.
- We may take $A = H^*(X, \mathbb{C})$ with d = 0, and get the usual resonance varieties, $\mathcal{R}^i(X) := \mathcal{R}^i(A)$.
- Or, we may take (A, d) to be a finite-type cdga, weakly equivalent to Sullivan's model A_{PL}(X), if such a cdga exists.
- If X is *formal*, then $(H^*(X, \mathbb{C}), d = 0)$ is such a finite-type model.
- Finite-type cdga models exist even for possibly non-formal spaces, such as nilmanifolds and solvmanifolds, Sasakian manifolds, smooth quasi-projective varieties, etc.

THEOREM (MACINIC, PAPADIMA, POPESCU, S. – 2013)

Suppose there is a finite-type CDGA (A, d) such that $A_{PL}(X) \simeq A$. Then, for each $i \ge 0$, the tangent cone at 0 to the resonance variety $\mathcal{R}^{i}(A)$ is contained in $\mathcal{R}^{i}(X)$.

In general, we cannot replace $TC_0(\mathcal{R}^i(A))$ by $\mathcal{R}^i(A)$.

EXAMPLE

- Let $X = S^1$, and take $A = \bigwedge (a, b)$ with $da = 0, db = b \cdot a$.
- Then $\mathcal{R}^1(A) = \{0, 1\}$ is not contained in $\mathcal{R}^1(X) = \{0\}$, though $TC_0(\mathcal{R}^1(A)) = \{0\}$ is.

A rationally defined CDGA (A, d) has positive weights if each Aⁱ can be decomposed into weighted pieces Aⁱ_α, with positive weights in degree 1, and in a manner compatible with the CDGA structure:

1
$$A^i = \bigoplus_{\alpha \in \mathbb{Z}} A^i_{\alpha}$$
.
2 $A^1 = 0$, for all $\alpha \leq 0$

- A¹_{\alpha} = 0, for all \alpha \le 0.
 If \$a \in Aⁱ_{\alpha\$} and \$b \in A^j_{\beta\$}, then \$ab \in A^{i+j}_{\alpha+\beta\$} and \$d \$a \in Aⁱ⁺¹_{\alpha}\$.
- A space X is said to have positive weights if $A_{PL}(X)$ does.
- If X is formal, then X has positive weights, but not conversely.

THEOREM (DIMCA–PAPADIMA 2014, MPPS)

Suppose there is a rationally defined, finite-type CDGA (A, d) with positive weights, and a q-equivalence between $A_{PL}(X)$ and A preserving Q-structures. Then, for each $i \leq q$,

- *Rⁱ(A)* is a finite union of rationally defined linear subspaces of *H*¹(*A*).

EXAMPLE

- Let *X* be the 3-dimensional Heisenberg nilmanifold.
- All cup products of degree 1 classes vanish; thus, $\mathcal{R}^1(X) = \mathcal{H}^1(X, \mathbb{C}) = \mathbb{C}^2.$
- Model $A = \bigwedge (a, b, c)$ generated in degree 1, with da = db = 0and $dc = a \cdot b$.
- This is a finite-dimensional model, with positive weights:
 wt(a) = wt(b) = 1, wt(c) = 2.
- Writing $S = \mathbb{C}[x, y]$, we get

$$A_{\bullet} \otimes S: \cdots \longrightarrow S^{3} \xrightarrow{\begin{pmatrix} y & 0 & 0 \\ -x & 0 & 0 \\ 1 & -x & -y \end{pmatrix}} S^{3} \xrightarrow{(x \ y \ 0)} S$$

• Hence $H_1(A_{\bullet}\otimes S) = S/(x, y)$, and so $\mathcal{R}^1(A) = \{0\}$.

CHARACTERISTIC VARIETIES

- Let *X* be a finite-type, connected CW-complex.
 - $\pi = \pi_1(X, x_0)$: a finitely generated group.
 - $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^*)$: an abelian, algebraic group.
 - $\operatorname{Char}(X)^0 \cong (\mathbb{C}^*)^n$, where $n = b_1(X)$.
- Characteristic varieties of X:

$$\mathcal{V}^{i}(X) = \{ \rho \in \operatorname{Char}(X) \mid H^{i}(X, \mathbb{C}_{\rho}) \neq \mathbf{0} \}.$$

Theorem (Libgober 2002, DIMCA–Papadima–S. 2009) $\tau_1(\mathcal{V}^i(X)) \subseteq \mathsf{TC}_1(\mathcal{V}^i(X)) \subseteq \mathcal{R}^i(X)$

• Here, if $W \subset (\mathbb{C}^*)^n$ is an algebraic subset, then $\tau_1(W) := \{z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \text{ for all } \lambda \in \mathbb{C}\}.$

This is a finite union of rationally defined linear subspaces of Cⁿ.

THEOREM (DIMCA–PAPADIMA 2014)

Suppose $A_{PL}(X)$ is q-equivalent to a finite-type model (A, d). Then $\mathcal{V}^i(X)_{(1)} \cong \mathcal{R}^i(A)_{(0)}$, for all $i \leq q$.

COROLLARY

If X is a q-formal space, then $\mathcal{V}^i(X)_{(1)} \cong \mathcal{R}^i(X)_{(0)}$, for all $i \leq q$.

- A precursor to corollary can be found in work of Green–Lazarsfeld on the cohomology jump loci of compact Kähler manifolds.
- The case when q = 1 was first established in [DPS-2009].
- Further developments in work of Budur–Wang [2013].

THE TANGENT CONE THEOREM

THEOREM

Suppose $A_{PL}(X)$ is *q*-equivalent to a finite-type CDGA *A*. Then, $\forall i \leq q$, **1** $C_1(\mathcal{V}^i(X)) = TC_0(\mathcal{R}^i(A))$.

If, moreover, A has positive weights, and the q-equivalence $A_{PL}(X) \simeq A$ preserves Q-structures, then $TC_1(\mathcal{V}^i(X)) = \mathcal{R}^i(A)$.

THEOREM (DPS-2009, DP-2014)

Suppose X is a q-formal space. Then, for all $i \leq q$,

$$\tau_1(\mathcal{V}^i(\boldsymbol{X})) = \mathsf{TC}_1(\mathcal{V}^i(\boldsymbol{X})) = \mathcal{R}^i(\boldsymbol{X}).$$

COROLLARY

If X is q-formal, then, for all $i \leq q$,

- All irreducible components of Rⁱ(X) are rationally defined subspaces of H¹(X, C).
- All irreducible components of $\mathcal{V}^{i}(X)$ which pass through the origin are algebraic subtori of $\operatorname{Char}(X)^{0}$, of the form $\exp(L)$, where *L* runs through the linear subspaces comprising $\mathcal{R}^{i}(X)$.

The Tangent Cone theorem can be used to detect non-formality.

EXAMPLE

• Let $\pi = \langle x_1, x_2 \mid [x_1, [x_1, x_2]] \rangle$.

• Then $\mathcal{V}^1(\pi) = \{t_1 = 1\}$, and so $\tau_1(\mathcal{V}^1(\pi)) = \mathsf{TC}_1(\mathcal{V}^1(\pi)) = \{x_1 = 0\}.$

• On the other hand, $\mathcal{R}^1(\pi) = \mathbb{C}^2$, and so π is not 1-formal.

EXAMPLE (DPS 2009)

Let $\pi = \langle x_1, \ldots, x_4 \mid [x_1, x_2], [x_1, x_4][x_2^{-2}, x_3], [x_1^{-1}, x_3][x_2, x_4] \rangle$. Then $\mathcal{R}^1(\pi) = \{z \in \mathbb{C}^4 \mid z_1^2 - 2z_2^2 = 0\}$: a quadric which splits into two linear subspaces over \mathbb{R} , but is irreducible over \mathbb{Q} . Thus, π is not 1-formal.

EXAMPLE (S.-YANG-ZHAO 2015)

Let π be a finitely presented group with $\pi_{ab} = \mathbb{Z}^3$ and

$$\mathcal{V}^{1}(\pi) = \{ (t_{1}, t_{2}, t_{3}) \in (\mathbb{C}^{*})^{3} \mid (t_{2} - 1) = (t_{1} + 1)(t_{3} - 1) \},\$$

This is a complex, 2-dimensional torus passing through the origin, but this torus does not embed as an algebraic subgroup in $(\mathbb{C}^*)^3$. Indeed,

$$\tau_1(\mathcal{V}^1(\pi)) = \{x_2 = x_3 = 0\} \cup \{x_1 - x_3 = x_2 - 2x_3 = 0\}.$$

Hence, π is not 1-formal.

GYSIN MODELS

- Let X be a (connected) smooth quasi-projective variety.
- Let X be a "good" compactification, i.e., X = X \D, for some normal-crossings divisor D = {D₁,..., D_m}.
- Algebraic model: $A = A(\overline{X}, D)$ (Morgan's *Gysin model*): a rationally defined, bigraded CDGA, with $A^i = \bigoplus_{p+q=i} A^{p,q}$ and

$$\mathcal{A}^{p,q} = \bigoplus_{|S|=q} \mathcal{H}^p\Big(\bigcap_{k\in S} \mathcal{D}_k, \mathbb{C}\Big)(-q)$$

- Multiplication $A^{p,q} \cdot A^{p',q'} \subseteq A^{p+p',q+q'}$ from cup-product in \overline{X} .
- Differential d: $A^{p,q} \rightarrow A^{p+2,q-1}$ from intersections of divisors.
- Model has positive weights: $wt(A^{p,q}) = p + 2q$.
- Improved version by Dupont [2013]: divisor D is allowed to have "arangement-like" singularities.

- Suppose $X = \Sigma$ is a connected, smooth algebraic curve.
- Then Σ admits a canonical compactification, Σ, and thus, a canonical Gysin model, A(Σ).

EXAMPLE

Let $\Sigma = E^*$ be a once-punctured elliptic curve. Then $\overline{\Sigma} = E$, and

 $A(\Sigma) = \bigwedge (a, b, e)/(ae, be)$

where *a*, *b* are in bidegree (1, 0) and *e* in bidegree (0, 1), while d a = d b = 0 and d e = ab.

THE TANGENT CONE THEOREM

THEOREM (BUDUR, WANG 2013)

Let X be a smooth quasi-projective variety. Then each characteristic variety $\mathcal{V}^{i}(X)$ is a finite union of torsion-translated subtori of Char(X).

THEOREM

Let A(X) be a Gysin model for X. Then, for each $i \ge 0$,

 $\tau_1(\mathcal{V}^i(X)) = \mathsf{TC}_1(\mathcal{V}^i(X)) = \mathcal{R}^i(\mathcal{A}(X)) \subseteq \mathcal{R}^i(X).$

Moreover, if X is q-formal, the last inclusion is an equality, for all $i \leq q$.

EXAMPLE

Let *X* be the \mathbb{C}^* -bundle over $E = S^1 \times S^1$ with e = 1. Then $\mathcal{V}^1(X) = \{1\}$, and so $\tau_1(\mathcal{V}^1(X)) = \mathsf{TC}_1(\mathcal{V}^1(X)) = \{0\}$. On the other hand, $\mathcal{R}^1(X) = \mathbb{C}^2$, and so *X* is not 1-formal.

A holomorphic map $f: X \to \Sigma$ is *admissible* if f is surjective, has connected generic fiber, and the target Σ is a connected, smooth complex curve with $\chi(X) < 0$.

THEOREM (ARAPURA 1997)

The map $f \mapsto f^*(\text{Char}(\Sigma))$ yields a bijection between the set \mathcal{E}_X of equivalence classes of admissible maps $X \to \Sigma$ and the set of positive-dimensional, irreducible components of $\mathcal{V}^1(X)$ containing 1.

THEOREM (DP 2014, MPPS 2013)

$$\mathcal{R}^{1}(\mathcal{A}(X)) = \bigcup_{f \in \mathcal{E}_{X}} f^{*}(\mathcal{H}^{1}(\mathcal{A}(\Sigma))).$$

THEOREM (DPS 2009)

Suppose X is 1-formal. Then $\mathcal{R}^1(X) = \bigcup_{f \in \mathcal{E}_X} f^*(H^1(\Sigma, \mathbb{C}))$. Moreover, all the linear subspaces in this decomposition have dimension ≥ 2 , and any two distinct ones intersect only at 0.

ALEX SUCIU

APPLICATIONS OF COHOMOLOGY JUMP LOCI

- Homological and geometric finiteness of regular abelian covers
 - Bieri-Neumann-Strebel-Renz invariants
 - Dwyer–Fried invariants
- Obstructions to (quasi-) projectivity
 - Right-angled Artin groups and Bestvina–Brady groups
 - 3-manifold groups, K\u00e4hler groups, and quasi-projective groups
- Resonance varieties and representations of Lie algebras
 - Homological finiteness in the Johnson filtration of automorphism groups
- Homology of finite, regular abelian covers
 - Homology of the Milnor fiber of an arrangement
 - Rational homology of smooth, real toric varieties
- Lower central series and Chen Lie algebras
 - The Chen ranks conjecture

REFERENCES

A.I. Suciu, Around the tangent cone theorem, arxiv:1502.02279.

- A. Dimca, S. Papadima, A.I. Suciu, Algebraic models, Alexander-type invariants, and Green–Lazarsfeld sets, Bull. Math. Soc. Sci. Math. Roumanie (to appear), arxiv:1407.8027.
- A. Măcinic, S. Papadima, R. Popescu, A.I. Suciu, *Flat connections and resonance varieties: from rank one to higher ranks*, arxiv:1312.1439.
- S. Papadima, A.I. Suciu, *Jump loci in the equivariant spectral sequence*, Math. Res. Lett. **21** (2014), no. 4, 863–883.
- A.I. Suciu, Y. Yang, G. Zhao, *Homological finiteness of abelian covers*, Ann. Sc. Norm. Super. Pisa **14** (2015), no. 1, 101–153.