Purity and flatness for quasicoherent sheaves

by

Alexander Slávik (joint with M. Prest & J. Šťovíček)

16th July 2019
What is purity?

Definition
Let \(R \) be a ring and \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) a short exact sequence of right \(R \)-modules. This sequence is called \textit{pure-exact} if one of these two equivalent conditions hold:

1. For every finitely presented right \(R \)-module \(F \), the complex of abelian groups
 \[
 0 \rightarrow \text{Hom}_R(F, A) \rightarrow \text{Hom}_R(F, B) \rightarrow \text{Hom}_R(F, C) \rightarrow 0
 \]
 is exact.

2. For every (finitely presented) left \(R \)-module \(G \), the complex of abelian groups
 \[
 0 \rightarrow A \otimes_R G \rightarrow B \otimes_R G \rightarrow C \otimes_R G \rightarrow 0
 \]
 is exact.
Generalizations

1. In any locally finitely presented abelian (lfp) category \mathcal{C}, pure-exactness can be defined via exactness of the functor $\text{Hom}_\mathcal{C}(F, -)$ for every finitely presented object F.

2. In any closed monoidal abelian category \mathcal{D}, pure-exactness can be defined via exactness of the functor $- \otimes G$ for every (finitely presented) object G.
Let X be a scheme. Then we have the following two Grothendieck categories:

- \mathcal{O}_X-Mod, the category of all sheaves of \mathcal{O}_X-modules,
- $\text{QCoh}(X)$, the full subcategory of the quasicoherent ones.

\mathcal{O}_X-Mod has a closed (symmetrical) monoidal category structure, which $\text{QCoh}(X)$ inherits.

\mathcal{O}_X-Mod is always lfp. If X is concentrated (= quasicompact & quasiseparated), then $\text{QCoh}(X)$ is lfp.
Introducing purity for sheaves

For both $\mathcal{C} \in \{\mathcal{O}_X\text{-Mod}, \text{QCoC}(X)\}$, we have both ways of introducing purity:

1. using the functors $\text{Hom}_\mathcal{C}(F, -)$ for $F \in \text{fp}(\mathcal{C})$, we will call this purity categorical or c-,
2. using the functors $- \otimes G$ for $G \in \mathcal{C}$, we will call this purity geometric or g-,

and these two notions are not equivalent in general.

Proposition (Enochs-Estrada-Odabaşı)

- Geometrical purity is the same as purity stalk-wise; in $\text{QCoC}(X)$, it also coincides with purity on each open affine set.
- For X concentrated, c-purity in $\text{QCoC}(X)$ is stronger than g-purity.
The following sequence in $\text{QCoh}(\mathbb{P}^1_k)$ is g-pure-exact, but not c-pure-exact:

$$0 \rightarrow \mathcal{O}(-2) \rightarrow \mathcal{O}(-1)^2 \rightarrow \mathcal{O}(0) \rightarrow 0.$$

In detail, passing to an open affine cover:
Let \(X = (\text{Spec } k)^{(\mathbb{N})} \), i.e. countable scheme coproduct of spectra of a field \(k \). As a topological space, \(X \) is a countable discrete set.

\(\mathcal{O}_X\text{-Mod} = \text{Qcoh}(X) = \) countable families of vector spaces over \(k \)-vector spaces, a semisimple category. Therefore both purities are trivial.
When purities coincide

If X is an affine scheme, then c-purity $= g$-purity. The converse is

Proposition (Prest-S.)

If X is a concentrated scheme and c-purity $= g$-purity in $\text{QCoh}(X)$, then X is affine.

Proof.

Since X is concentrated, the structure sheaf \mathcal{O}_X is finitely presented in $\text{QCoh}(X)$. It is also *flat* (on each open affine), so every short exact sequence ending in it is g-pure-exact. If g-pure $= c$-pure, then any such sequence splits, so \mathcal{O}_X is projective and X is affine by Serre’s criterion.
Assume further that X is concentrated. Accordingly, we have two types of pure-injective sheaves: c-pure-injective and g-pure-injective (stronger property).

Recall that indecomposable pure-injective objects of a category form a topological space called Ziegler spectrum; for $\text{QCoh}(X)$, g-pure-injectives form a subset of Ziegler spectrum.
Proposition (Prest-S.)

- Every indecomposable g-pure-injective $N \in \text{QCoh}(X)$ is the direct image of a unique indecomposable g-pure-injective $N' \in \text{QCoh}(U)$, where U is open affine.
- Every indecomposable g-pure-injective $N \in \text{QCoh}(X)$ is the coherator of some (non-unique) indecomposable g-pure-injective $M \in \mathcal{O}_X\text{-Mod}$.
- g-pure-injectives form a quasicompact closed subset of $Zg(\text{QCoh}(X))$.

A picture appears on the blackboard…
Example: $\text{Zg}(\text{QCoh}(\mathbb{P}^1_k))$

For each closed point x of $X = \mathbb{P}^1_k$, there are the following g-pure-injective indecomposable quasicoherent sheaves:

- completion of $\mathcal{O}_{X,x}$ in its maximal ideal m_x,
- “Prüfer” $\mathcal{O}_{X,x}$-module,
- for each $n \in \mathbb{N}$, the finite length sheaf $\mathcal{O}_{X,x}/m_x^n$.

Additionally, there is the g-pure-injective constant sheaf having $k(x)$ everywhere.

Finally, for each $n \in \mathbb{Z}$, the n-th twist of the structure sheaf $\mathcal{O}(n)$ is c-pure-injective (but not g-pure-injective).

Note: Because of the line bundles, the Ziegler spectrum is not quasicompact.
Recall that closed subsets of Ziegler spectrum correspond to definable subcategories; let \mathcal{D}_X be the definable subcategory of $\text{QCoh}(X)$ corresponding to indecomposable g-pure-injectives.

This is the subcategory “where purities coincide”:

Proposition (Prest-S.)

- A c-pure-injective quasicoherent sheaf is g-pure-injective if and only if it belongs to \mathcal{D}_X.
- Any g-pure-exact sequence starting in an object of \mathcal{D}_X is c-pure-exact.
Example

If $X = \mathbb{P}^1_k$, then

$$\mathcal{D}_X = \left\{ m \in \text{QCoh}(X) \mid \forall n \in \mathbb{Z} : \text{Ext}^1_{\text{QCoh}(X)}(\mathcal{O}(n), m) = 0 \right\}$$

$$= \left\{ m \in \text{QCoh}(X) \mid \forall n \in \mathbb{Z} : \text{Hom}^1_{\text{QCoh}(X)}(m, \mathcal{O}(n)) = 0 \right\}.$$

Therefore, in this case, \mathcal{D}_X is a torsion class and a right class of a cotorsion pair.
Flat generators
There are (at least) three candidates for what \textit{flat} could mean for \(m \in \text{Q Coh}(X) \):

1. every s.e.s. ending in \(m \) is c-pure-exact; these often do not exist [Estrada-Saorín ’12]

2. every s.e.s. ending in \(m \) is g-pure-exact;

3. tensoring by \(m \) is exact; equivalently, if \(m(U) \) is flat for each open affine \(U \subseteq X \).

Clearly (1) \(\Rightarrow \) (2) and (3) \(\Rightarrow \) (2). If \(X \) is semiseparated, then also (2) \(\Rightarrow \) (3).
We adopt the definition (3): flat = flat on open affines.

If X is quasicompact and semiseparated, then $\text{QCoh}(X)$ has a flat generator [Murfet, Neeman, Positselski...].

A bit surprisingly, this is an equivalence:

Theorem (S.-Šťovíček)

A concentrated scheme X is semiseparated if and only if $\text{QCoh}(X)$ has a flat generator.
Elementary dual

A useful tool for dealing with purity in modules is the elementary dual $\text{Hom}_R(−, E)$, where E is the injective cogenerator of $\text{Mod}-R$ (R commutative).

For dealing with geometric purity, there is an analogue $\text{Hom}^{qc}(−, ℰ)$, where $ℰ$ is the injective cogenerator of $\text{QCoh}(X)$.

Lemma

Let C be a symmetric closed monoidal Grothendieck category with internal hom functor HOM. If C has a flat generator and $E \in C$ is injective, then the functor $\text{HOM}(−, E)$ is exact.

Therefore for X semiseparated, the elementary dual is exact.
In fact, we again have a sort of converse:

Theorem (S.-Šťovíček)

A concentrated scheme X is semiseparated if and only if for every injective $\mathcal{E} \in \text{QCoh}(X)$, the functor $\mathcal{H}om^{\text{qc}}(-, \mathcal{E})$ is exact.

On the other hand, this does not spoil any nice properties of elementary dual even in the non-semiseparated case.