Positive Primitive Torion

In [MR], Martsinkovsky and Russell introduced a new concept of, what they call injective torsion and cotorsion.

Given an arbitrary ring R, let $E: R\rightarrow E$ be an injective envelope. Then $\Phi : R\text{-Mod} \rightarrow R\text{-Mod}$ is the subfunctor of 1 that is the kernel of $E \otimes 1$ and ν^{-1} is the quotient functor of 1 given as $1/\nu^{-1}$, where ν^{-1} is the trace of the injective left R-modules.

Call a unary APP formula (or the corresponding functor from $R\text{-Mod} \rightarrow Ab$) low if it vanishes on all flats and high if it covanishes on all injectives (i.e., restricted to injectives the pp functor is 1).

Thus Φ is the sum of all low pp functors.

Let \mathcal{N} be the intersection of all high pp functors. Also \mathcal{N} is a functor from $R\text{-Mod} \rightarrow R\text{-Mod}$, called the Ulm functor, as it yields the first Ulm subgroup if $R = \mathbb{Z}$. Iterate \mathcal{N} (as in $Ab = \mathbb{Z}\text{-Mod}$) and denote the intersection of all iterates by \mathcal{N}^{∞}.

Thus 2. $\nu^{-1} \leq \mathcal{N}^{\infty}$

Thus 3. Restricted to pure injective modules, we have $\nu^{-1} = \mathcal{N} = \mathcal{N}^{\infty}$ and thus (known for Ab) $\nu = 1/\mathcal{N}$ (on pure-injectives!).

This joint work in progress with Alex Martsinkovsk.

Philipp Rothmaler: philipp.rothmaler@bcc.cuny.edu