n-Abelian categories through functor categories

Vitor Gulisz

Northeastern University

Maurice Auslander Distinguished Lectures and International Conference April 26, 2024

Based on ongoing work supervised by Alex Martsinkovsky

Conventions for this talk

- * $\ensuremath{\mathfrak{C}}$ is an additive and idempotent complete category.
- * *n* is a positive integer.

A (right) C-module is a contravariant additive functor from C to Ab.

A C-module F is finitely presented if there is an exact sequence

$$\mathfrak{C}(-,X) \xrightarrow{\mathfrak{C}(-,f)} \mathfrak{C}(-,Y) \longrightarrow F \longrightarrow 0$$

for some morphism $X \xrightarrow{f} Y$ in \mathcal{C} .

The category of finitely presented C-modules is denoted by mod C.

The projective objects of mod \mathcal{C} are given by $\mathcal{C}(-, X)$, where $X \in \mathcal{C}$.

* By taking C^{op} in place of C, we obtain the category **mod** C^{op} of finitely presented **left** C-modules.

We say that \mathcal{C} is **right coherent** when mod \mathcal{C} is abelian,

 \mathcal{C} is **left coherent** when mod \mathcal{C}^{op} is abelian.

It was independently proved by Auslander (1965) and Freyd (1965) that

mod \mathcal{C} is abelian if and only if \mathcal{C} has has weak kernels,

mod \mathcal{C}^{op} is abelian if and only if \mathcal{C} has has weak cokernels.

Idea: To describe properties of C in terms of mod C and mod C^{op} , and vice versa.

Goal: To describe properties of an *n*-abelian category \mathcal{C} in terms of mod \mathcal{C} and mod \mathcal{C}^{op} .

Advantage: We could understand *n*-abelian categories through abelian categories.

The category $\mathcal C$ is abelian if and only if it satisfies the following axioms:

(A1) C has kernels.

- (A1^{op}) C has cokernels.
 - (A2) Every monomorphism in \mathcal{C} is the kernel of its cokernel.
- (A2^{op}) Every epimorphism in \mathcal{C} is the cokernel of its kernel.

This is the case n = 1 of the more general notion of an *n*-abelian category defined by Jasso (2016).

An *n*-kernel for $X \xrightarrow{f} Y$ is a sequence

$$X_n \xrightarrow{f_n} \cdots \xrightarrow{f_2} X_1 \xrightarrow{f_1} X$$

of morphisms in $\ensuremath{\mathbb{C}}$ with the property that

$$0 \longrightarrow \mathbb{C}(-, X_n) \xrightarrow{\mathbb{C}(-, f_n)} \cdots \xrightarrow{\mathbb{C}(-, f_2)} \mathbb{C}(-, X_1) \xrightarrow{\mathbb{C}(-, f_1)} \mathbb{C}(-, X) \xrightarrow{\mathbb{C}(-, f)} \mathbb{C}(-, Y)$$

is exact.

An *n*-cokernel for $X \xrightarrow{f} Y$ is a sequence

$$Y \xrightarrow{g_1} Y_1 \xrightarrow{g_2} \cdots \xrightarrow{g_n} Y_n$$

of morphisms in $\ensuremath{\mathbb{C}}$ with the property that

$$0 \longrightarrow \mathcal{C}(Y_n, -) \xrightarrow{\mathcal{C}(g_n, -)} \cdots \xrightarrow{\mathcal{C}(g_2, -)} \mathcal{C}(Y_1, -) \xrightarrow{\mathcal{C}(g_1, -)} \mathcal{C}(Y, -) \xrightarrow{\mathcal{C}(f, -)} \mathcal{C}(X, -)$$

is exact.

The category \mathcal{C} is *n***-abelian** if and only if it satisfies the following axioms:

- (A1) C has *n*-kernels.
- (A1^{op}) C has *n*-cokernels.

(A2) For every monomorphism $X \xrightarrow{f} Y$ in \mathcal{C} and for every *n*-cokernel

$$Y \xrightarrow{g_1} Y_1 \xrightarrow{g_2} \cdots \xrightarrow{g_n} Y_n$$

of f, the sequence

$$X \xrightarrow{f} Y \xrightarrow{g_1} \cdots \xrightarrow{g_{n-1}} Y_{n-1}$$

is an *n*-kernel of g_n .

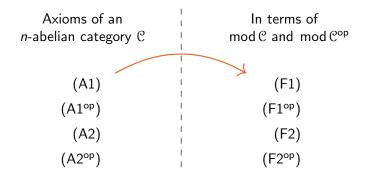
(A2^{op}) For every epimorphism $X \xrightarrow{f} Y$ in \mathcal{C} and for every *n*-kernel

$$X_n \xrightarrow{f_n} \cdots \xrightarrow{f_2} X_1 \xrightarrow{f_1} X$$

of f, the sequence

$$X_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_1} X \xrightarrow{f} Y$$

is an *n*-cokernel of f_n .



- * The following axioms are equivalent:
 - (A1) C has *n*-kernels.
 - (F1) C is right coherent and gl. dim(mod C) $\leq n + 1$.
- * Dually, the following are equivalent:
- (A1^{op}) C has *n*-cokernels.
- (F1^{op}) \mathcal{C} is left coherent and gl. dim(mod $\mathcal{C}^{op}) \leq n+1$.

- * If \mathcal{C} satisfies (A1) and (A1^{op}), then the following axioms are equivalent:
 - (A2) For every monomorphism (...).
 - (F2) Every $F \in \text{mod } \mathbb{C}$ with $\text{pd } F \leq 1$ is *n*-torsion free.
- * Dually, the following are equivalent:

(A2^{op}) For every epimorphism (...). (F2^{op}) Every $F \in \text{mod } \mathbb{C}^{\text{op}}$ with pd $F \leqslant 1$ is *n*-torsion free.

 $F \in \text{mod } \mathbb{C} \text{ is } \frac{n\text{-torsion free if } \text{Ext}^{i}(\text{Tr } F, \mathbb{C}(X, -)) = 0}{\text{for all } X \in \mathbb{C} \text{ and } 1 \leq i \leq n.}$

An additive and idempotent complete category \mathcal{C} is *n*-abelian if and only if \mathcal{C} satisfies the following axioms:

(F1) \mathcal{C} is right coherent and gl. dim(mod $\mathcal{C}) \leq n+1$.

(F1^{op}) C is left coherent and gl. dim $(mod C^{op}) \leq n+1$.

(F2) Every $F \in \text{mod } \mathbb{C}$ with $\text{pd } F \leq 1$ is *n*-torsion free.

(F2^{op}) Every $F \in \text{mod } \mathcal{C}^{\text{op}}$ with pd $F \leq 1$ is *n*-torsion free.

* Either gl. dim(mod \mathcal{C}) = 0 or n + 1.

Fact. When n = 1, we can replace the axioms (A2) and (A2^{op}) by:

- $(A2_*)$ Every monomorphism is a kernel.
- $(A2_*^{op})$ Every epimorphism is a cokernel.

Question. What about for an arbitrary *n*?

* If \mathcal{C} is right and left coherent, then the following axioms are equivalent:

(F2) Every $F \in \text{mod } \mathcal{C}$ with pd $F \leq 1$ is *n*-torsion free.

(F2_{*}) Every *m*-spherical object in mod \mathcal{C} is a syzygy, for all $1 \leq m \leq n$.

* Dually, the following are equivalent:

(F2^{op}) Every $F \in \text{mod } \mathbb{C}^{\text{op}}$ with $\text{pd } F \leq 1$ is *n*-torsion free. (F2^{op}_{*}) Every *m*-spherical object in mod \mathbb{C}^{op} is a syzygy, for all $1 \leq m \leq n$.

> $F \in \text{mod } \mathbb{C} \text{ is } m\text{-spherical if } pd F \leq m \text{ and}$ $\operatorname{Ext}^{i}(F, \mathbb{C}(-, X)) = 0 \text{ for all } X \in \mathbb{C} \text{ and } 1 \leq i \leq m - 1.$

Let *m* be a positive integer. An *m*-segment in \mathcal{C} is a sequence

$$X_m \xrightarrow{f_m} \cdots \xrightarrow{f_2} X_1 \xrightarrow{f_1} X_0$$

of morphisms in \mathcal{C} for which

$$0 \longrightarrow \mathcal{C}(-, X_m) \xrightarrow{\mathcal{C}(-, f_m)} \cdots \xrightarrow{\mathcal{C}(-, f_2)} \mathcal{C}(-, X_1) \xrightarrow{\mathcal{C}(-, f_1)} \mathcal{C}(-, X_0)$$

and

$$\mathfrak{C}(X_0,-) \xrightarrow{\mathfrak{C}(f_1,-)} \mathfrak{C}(X_1,-) \xrightarrow{\mathfrak{C}(f_2,-)} \cdots \xrightarrow{\mathfrak{C}(f_m,-)} \mathfrak{C}(X_m,-)$$

are exact.

* A 1-segment is the same as a monomorphism.

Let *m* be a positive integer. An *m*-cosegment in C is a sequence

$$Y_0 \xrightarrow{g_1} Y_1 \xrightarrow{g_2} \cdots \xrightarrow{g_m} Y_m$$

of morphisms in $\ensuremath{\mathbb{C}}$ such that

$$0 \longrightarrow \mathfrak{C}(Y_m, -) \xrightarrow{\mathfrak{C}(g_m, -)} \cdots \xrightarrow{\mathfrak{C}(g_2, -)} \mathfrak{C}(Y_1, -) \xrightarrow{\mathfrak{C}(g_1, -)} \mathfrak{C}(Y_0, -)$$

and

$$\mathfrak{C}(-,Y_0) \xrightarrow{\mathfrak{C}(-,g_1)} \mathfrak{C}(-,Y_1) \xrightarrow{\mathfrak{C}(-,g_2)} \cdots \xrightarrow{\mathfrak{C}(-,g_m)} \mathfrak{C}(-,Y_m)$$

are exact.

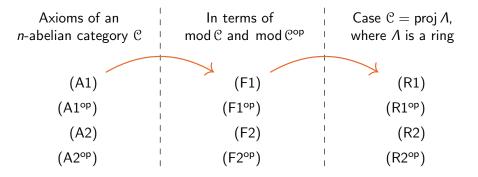
* A 1-cosegment is the same as an epimorphism.

- * If \mathcal{C} is right and left coherent, then the following axioms are equivalent:
- (F2_{*}) Every *m*-spherical object in mod \mathcal{C} is a syzygy, for all $1 \leq m \leq n$. (A2_{*}) Every *m*-segment in \mathcal{C} is an *m*-kernel, for all $1 \leq m \leq n$.
- * Dually, the following are equivalent:
- (F2^{op}_{*}) Every *m*-spherical object in mod \mathcal{C}^{op} is a syzygy, for all $1 \le m \le n$. (A2^{op}_{*}) Every *m*-cosegment in \mathcal{C} is an *m*-cokernel, for all $1 \le m \le n$.

An additive and idempotent complete category \mathcal{C} is *n*-abelian if and only if \mathcal{C} satisfies the following axioms:

- (A1) C has *n*-kernels.
- (A1^{op}) C has *n*-cokernels.
 - (A2_{*}) Every *m*-segment in C is an *m*-kernel, for all $1 \leq m \leq n$.

 $(A2^{op}_*)$ Every *m*-cosegment in \mathcal{C} is an *m*-cokernel, for all $1 \leq m \leq n$.



Let Λ be a ring. The category proj Λ of finitely generated projective Λ -modules is *n*-abelian if and only if Λ satisfies the following axioms:

(R1) Λ is right coherent and gl. dim(mod Λ) $\leq n + 1$.

- (R1^{op}) Λ is left coherent and gl. dim(mod $\Lambda^{op}) \leqslant n+1$.
 - (R2) Every $M \in \text{mod } \Lambda$ with $\text{pd } M \leq 1$ is *n*-torsion free.

(R2^{op}) Every $M \in \text{mod } \Lambda^{\text{op}}$ with pd $M \leqslant 1$ is *n*-torsion free.

There is a bijective correspondence between the equivalence classes of *n*-abelian categories with additive generators and the Morita equivalence classes of rings satisfying the axioms (R1), (R1^{op}), (R2) and (R2^{op}). The correspondence is given as follows:

$$\begin{cases} n-\text{Abelian categories} \\ \text{with additive generators} \end{cases} & \longleftrightarrow & \begin{cases} \text{Rings satisfying} \\ (\text{R1}), (\text{R1}^{\text{op}}), (\text{R2}), (\text{R2}^{\text{op}}) \end{cases} \end{cases}$$
$$\mathcal{C} = \text{add } X \qquad \longmapsto \qquad \text{End}(X)$$
$$\text{proj } \Lambda \qquad \longleftrightarrow \qquad \Lambda$$

The higher Auslander correspondence is a special case.

n-Abelian categories

with additive generators $\left\{ \begin{array}{l} n\text{-Cluster tilting subcategories} \\ \text{with additive generators of} \\ \text{categories of finitely presented} \\ \text{modules over Artin algebras} \end{array} \right\} \qquad \longleftrightarrow \qquad \left\{ \begin{array}{l} \text{Rings satisfying} \\ (\text{R1}), (\text{R1}^{\text{op}}), (\text{R2}), (\text{R2}^{\text{op}}) \\ \left\{ n\text{-Auslander algebras} \right\} \right\}$

Thank you!