A cluster structure on the coordinate ring of partial flag varieties

Fayadh Kadhem

Department of Mathematics
Louisiana State University

Auslander Conference
Oct 26, 2022
Abstract

The main goal is to show that the (multi-homogeneous) coordinate ring of a partial flag variety $\mathbb{C}[G/P_K]$ contains a cluster algebra for any semisimple complex algebraic group G. We use derivation properties and a special lifting map to prove that the cluster algebra structure \mathcal{A} of the coordinate ring $\mathbb{C}[N_K]$ of a Schubert cell constructed by Goodearl and Yakimov can be lifted, in an explicit way, to a cluster structure $\hat{\mathcal{A}}$ living in the coordinate ring of the corresponding partial flag variety. Then we use a minimality condition to prove that the cluster algebra $\hat{\mathcal{A}}$ is equal to $\mathbb{C}[G/P_K]$ after localizing some special minors.
Outline

1. Cluster algebra overview
2. Partial flag varieties
3. A cluster structure on $\mathbb{C}[G/P_K]$
Cluster algebra overview

Definition

A seed is a pair (\tilde{x}, \tilde{B}) with the following data:

- \tilde{x} is a tuple of algebraically independent variables
 $\tilde{x} = (x_1, ..., x_n, ..., x_m)$;

- $x_1, ..., x_n, ..., x_m$ generate an ambient field \mathcal{F}, that is, a field isomorphic to $\mathbb{C}(x_1, ..., x_n, x_{n+1}, ..., x_m)$;

- \tilde{B} is an $m \times n$ matrix whose north $n \times n$ submatrix B is skew-symmetrizable, that is, can be transformed to a skew-symmetric matrix by multiplying each row r_i by some nonzero integer d_i;

The tuple \tilde{x} is called an extended cluster, where its first n-variables are called the mutable variables and the next $(m - n)$-variables are called the frozen variables. The matrix \tilde{B} is called the exchange matrix.
Definition

Let (\tilde{x}, \tilde{B}) be a seed. A mutation μ_k at $k \in [1, n]$ is a transformation to a new seed $\mu_k(\tilde{x}, \tilde{B}) = (\tilde{x}', \tilde{B}')$, where the entries of the matrix \tilde{B}' are given by

$$
b'_{ij} = \begin{cases}
-b_{ij}, & \text{if } i = k \text{ or } j = k, \\
b_{ij} + \frac{|b_{ik}| b_{kj} + b_{ik} |b_{kj}|}{2}, & \text{otherwise};
\end{cases}
$$

and $\tilde{x}' = (x'_1, ..., x'_m)$, where $x'_i = x_i$ if $i \neq k$ and

$$x_k x'_k = \prod_{b_{ik} > 0} x_i^{b_{ik}} + \prod_{b_{ik} < 0} x_i^{-b_{ik}}.$$
Remark

It is not hard to verify that μ_k is an \textit{involution}, that is,

$$\mu_k(\mu_k(\tilde{x}, \tilde{B})) = (\tilde{x}, \tilde{B}).$$

Remark

Let us start with an \textit{initial seed} (\tilde{x}, \tilde{B}). It is known that any mutable variable can be obtained from (\tilde{x}, \tilde{B}) by some sequence of mutations at some mutable indices. Therefore, knowing an initial seed gives a full picture of the mutable variables, and thus all of the extended clusters.
Definition

Let \((\tilde{x}, \tilde{B})\) be a seed. The \textit{cluster algebra} (of \textit{geometric type}) is the polynomial algebra over \(\mathbb{C}\) of all mutable and frozen variables.
Partial flag varieties

Remark

From now on, the set I denotes the vertex set of the Dynkin diagram Δ corresponding to G.

Definition

A *parabolic* subgroup P of G is a closed subgroup that lies between G and some Borel subgroup B.
Example

1. Any Borel subgroup B is parabolic.

2. Fix a nonempty subset $J \subset I$ and let $K = I \setminus J$. Denote by $x_i(t)$ ($i \in I$, $t \in \mathbb{C}$) the simple root subgroups of the unipotent radical N of B and denote by $y_i(t)$ the simple root subgroups of the unipotent radical N^- of B^-. The subgroup P_K generated by B and the one-parameter subgroups $y_k(t)$ ($k \in K$, $t \in \mathbb{C}$) is parabolic. Similarly, the subgroup P^-_K generated by B^- and the one-parameter subgroups $x_k(t)$ ($k \in K$, $t \in \mathbb{C}$) is a parabolic subgroup.
Definition

A quotient G/P is called a \textit{(partial) flag variety} if P is a parabolic subgroup of G.

Remark

It is known that any parabolic subgroup is conjugate to a parabolic subgroup of the form P_K. This somehow, in many cases, reduces the study of partial flag varieties to the ones of the form G/P_K.
Remark

The partial flag variety G/P_K^- can be naturally embedded as a closed subset of the product of projective spaces

$$\prod_{j \in J} \mathbb{P}(L(\varpi_j)^*),$$

where ϖ_j is a fundamental weight of G, and for a dominant weight λ, the corresponding $L(\lambda)$ is the finite-dimensional irreducible G-module with highest weight λ; and $L(\lambda)^*$ denotes the right G-module obtained by twisting the action of G. As a terminology, the $L(\varpi_i)$'s are called the fundamental representations.
Remark

Let \(\Pi_J \cong \mathbb{N}^J \) denote the monoid of dominant integral weights of the form \(\lambda = \sum_{j \in J} a_j \varpi_j \), where \(a_j \in \mathbb{N} \). The multi-homogeneous coordinate ring \(\mathbb{C}[G/P^-_K] \) is a \(\Pi_J \)-graded algebra. In particular,

\[
\mathbb{C}[G/P^-_K] = \bigoplus_{\lambda \in \Pi_J} L(\lambda).
\]

One of the significant results is that \(\mathbb{C}[G/P^-_K] \) can be identified with the subalgebra of \(\mathbb{C}[G/N^-] \) generated by the homogeneous elements of degree \(\varpi_j \), where \(j \in J \).
Remark

For a Weyl group W of G, the longest element in this paper will always be denoted by w_0 and the Coxetor generators will be denoted by s_i where i runs in I.

The notation of the length of some $w \in W$ will be $\ell(w)$. The Chevalley generators of the Lie algebra \mathfrak{g} of G are denoted e_i, f_i, h_i, where again i runs in I. The e_i's here generate $\text{Lie}(N) = \mathfrak{n}$. An important consequence of this is that N acts naturally from the left and right on $\mathbb{C}[N]$ by the following left and right actions respectively:

$$(x \cdot f)(n) = f(nx), \quad (f \in \mathbb{C}[N] \text{ and } x, n \in N),$$

$$(f \cdot x)(n) = f(xn), \quad (f \in \mathbb{C}[N] \text{ and } x, n \in N).$$

One might differentiate these two actions to get left and right actions of \mathfrak{n} on $\mathbb{C}[N]$, respectively.
Notation

The right action of e_i on $f \in \mathbb{C}[\mathcal{N}]$ will be denoted by $e_i^\dagger(f) := f \cdot e_i$.

Remark

Let G be of type A. A (flag) minor is a regular irreducible function of $\mathbb{C}[G]$ defined as follows: For each subset $I \subset [1, n] := \{1, \ldots, n\}$ and each matrix $x \in G$, the minor $\Delta_I(x)$ is defined to be the determinant of the submatrix of x whose rows are indexed by I and columns are indexed by $1, \ldots, |I|$. This notion was generalized by Fomin and Zelevinsky to the notion of (generalized) minor $\Delta_{u \varpi_j, w(\varpi_j)}$, where u, w belong to the Weyl group W. The notions of flag minors and generalized minors coincide in type A. However, the generalized minor notion makes sense in any type.
Remark

There minors $\Delta_{\varpi_j, w(\varpi_j)}$, $w \in W$, are of degree ϖ_j. They connect the coordinate ring of the cell with the coordinate ring of the corresponding flag variety by the following rule:

$$\mathbb{C}[N_K] = \mathbb{C}[G/P^-_K]/(\Delta_{\varpi_j, \varpi_j} - 1), \quad (j \in J).$$

Notation

The restriction of non-vanishing $\Delta_{\varpi_j, w(\varpi_j)}$ on $\mathbb{C}[N_K]$ will be denoted by $D_{\varpi_j, w(\varpi_j)}$.
In the work of Geiß, Leclerc and Schröer, they proved that \(\mathbb{C}[G/P_K^-] \) admits a cluster structure if \(G \) is simply-laced of type \(A_n \) or \(D_4 \), up to certain localization. They conjectured that this is true for any semisimple \(G \). Our work proved this generality with a relaxed localization.
Lemma

For every $f \in \mathbb{C}[N_K]$ there exists a unique homogeneous element $\tilde{f} \in \mathbb{C}[G/P_K^{-}]$ such that its projection to $\mathbb{C}[N_K]$ is f and whose multi-degree is minimal with respect to the usual partial ordering obtained by the usual ordering of weights, that is, $\mu \preceq \lambda$ iff $\lambda - \mu$ is an \mathbb{N}-linear combination of weights ϖ_j ($j \in J$).
Remark

The proof of the preceding lemma involves the following important points:

1. The notation $a_j(f)$ means the maximum of $\left\{ s \mid (e^\dagger_j)^sf \neq 0 \right\}$.

2. The notation $\lambda(f)$ means

$$\lambda(f) = \sum_{j \in J} a_j(f) \omega_j.$$

3. The minimality in the previous lemma means that $\lambda(f)$ is minimal in the following sense: if $\tilde{f} \in L(\lambda)$ and $\text{proj}(\tilde{f}) = f$ then $\lambda(f) \leq \lambda$. On the other hand, the projection of each piece $L(\lambda)$ to $\mathbb{C}[N_K]$ is injective and so there if there is an element there whose projection is f, then it is unique in $L(\lambda)$. These two pieces of information together are the main ingredients in proving the existence and uniqueness of $\lambda(f)$.
Remark

One might naively guess that $\tilde{D}_{\varpi l, w(\varpi l)} = \Delta_{\varpi l, w(\varpi l)}$, but this is not true in general.

Our work shows the following:

Theorem (F.K.)

Let $w = s_{i_1}s_{i_2}\ldots s_{i_n} \in \mathcal{W}$ and α_{i_1} be the vertex of the Dynkin diagram indexed by i_1.

$$\tilde{D}_{\varpi_{i_k}, w \leq k \varpi_{i_k}} = \frac{\Delta_{\varpi_{i_k}, w \leq k \varpi_{i_k}} \Delta_{d_k \varpi_{i_1}, \varpi_{i_1}}}{\Delta_{\varpi_{i_k}, \varpi_{i_k}}}$$

where $s_{i_1}(s_{i_2}\ldots s_{i_k})(\varpi_{i_n}) = s_{i_2}\ldots s_{i_k}(\varpi_{i_n}) - d_k \alpha_{i_1}$, and $k \in \{1, \ldots, n\}$.
Remark

Indeed, Geiß, Leclerc and Schröer proved that the coordinate ring of a partial flag variety has a cluster structure, for types A_n and D_4, by showing the following:

1. The coordinate ring of a Schubert cell has a cluster algebra structure \mathcal{A}.

2. The cluster algebra \mathcal{A} of the previous step can be lifted to some special cluster algebra $\hat{\mathcal{A}}$ that lives in the coordinate ring of the partial flag variety corresponding to the coordinate ring of the cell of the previous step.

3. The cluster algebra $\hat{\mathcal{A}}$ is equal to the coordinate ring of the partial flag variety, up to localization by non-minuscule minors indexed by $j \in J$.
Remark

The program of Geiß, Leclerc and Schröer, can be followed to prove the general argument for any semisimple algebraic complex group G. However, unfortunately, some essential tools of the proof work on the simply-laced case only. In fact, it uses some categorification in which works in the simply-laced case only, to show the first and the second steps, while it treated the third step for types A_n and D_4 case by case. Because of that, it was not possible for us to use the same tools. Thus, the generalization we seek must use some other results.
However, a significant consequence of the work of Goodearl and Yakimov is the following:

Theorem

For any semisimple complex algebraic group G, the coordinate ring $\mathbb{C}[N_K]$ has a canonical cluster algebra structure.
To see the cluster structure of Goodearl and Yakimov consider the following:

Definition

Define the functions p and s by

$$p(k) := \begin{cases} \max\{j < k \mid i_j = i_k\}, & \text{if such } j \text{ exists;} \\ -\infty, & \text{otherwise.} \end{cases}$$

$$s(k) := \begin{cases} \min\{j > k \mid i_j = i_k\}, & \text{if such } j \text{ exists;} \\ \infty, & \text{otherwise.} \end{cases}$$
Remark

Let $i = (i', i'')$ be a word of the longest element w_0 of W whose subword i' corresponds to the longest element of w_0^K of the Dynkin subdiagram indexed by K. The initial extended cluster variables of Goodearl and Yakimov are given by $D_{\varpi_j, w \leq j \varpi_j}, (j \in I)$, in which the frozen variables are the ones indexed by $j \in I$ such that $s(j) = \infty$. The extended exchange matrix is given by

$$((\widetilde{B}^w)_{jk} = \begin{cases}
1, & \text{if } j = p(k), \\
-1, & \text{if } j = s(k), \\
a_{ij}i_k, & \text{if } j < k < s(j) < s(k), \\
a_{ij}i_k, & \text{if } k < j < s(k) < s(j), \\
0, & \text{otherwise;}
\end{cases}$$

where the entry $a_{ij}i_k$ is the same $i_j \times i_k$ entry of the Cartan matrix of the same type.
So we have now:

1. The coordinate ring of a Schubert cell has a cluster algebra structure \mathcal{A}. ✓

2. The cluster algebra \mathcal{A} of the previous step can be lifted to some special cluster algebra $\hat{\mathcal{A}}$ that lives in the coordinate ring of the partial flag variety corresponding to the coordinate ring of the cell of the previous step.

3. The cluster algebra $\hat{\mathcal{A}}$ is equal to the coordinate ring of the partial flag variety, up to localization by non-minuscule minors indexed by $j \in J$.
Remember this:

Lemma

For every $f \in \mathbb{C}[N_K]$, there exists a unique homogeneous element $\tilde{f} \in \mathbb{C}[G/P^{-}]$ such that its projection to $\mathbb{C}[N_K]$ is f and whose multi-degree is minimal with respect to the usual partial ordering obtained by the usual ordering of weights, that is, $\mu \preceq \lambda$ iff $\lambda - \mu$ is an \mathbb{N}-linear combination of weights ϖ_j ($j \in J$).

Lemma

For all $f, g \in \mathbb{C}[N_K]$, we have $\tilde{f} \cdot \tilde{g} = \tilde{f} \cdot \tilde{g}$. If for any $j \in J$, $a_j(f + g) = \max\{a_j(f), a_j(g)\}$, then there are some relatively prime monomials μ, ν in the generalized minors $\Delta_{\varpi_j, \varpi_j}$ such that

$$\tilde{f} + \tilde{g} = \mu \tilde{f} + \nu \tilde{g}.$$
Remark

Let \((\tilde{x}, \tilde{B})\) be a seed of the cluster algebra \(A = \mathbb{C}[N_K]\). Then the mutation formula tells us that \(x_kx'_k = M_k + L_k\), where \(M_k, L_k\) are monomials in the variables \(x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n\). As a consequence of the previous lemma we get that

\[
\tilde{x}_k \tilde{x}'_k = \mu_k \tilde{M}_k + \nu_k \tilde{L}_k,
\]

where \(\mu_k\) and \(\nu_k\) are relatively prime monomials in \(\Delta_{\omega_j, \omega_j}\) \((j \in J)\). This means that we can write \(\mu_k\) and \(\nu_k\) as

\[
\mu_k = \prod_{j \in J} \Delta^{\alpha_j}_{\omega_j, \omega_j} \quad \text{and} \quad \nu_k = \prod_{j \in J} \Delta^{\beta_j}_{\omega_j, \omega_j}.
\]
Definition

For any seed \((x, B)\) of the cluster algebra \(A_J = \mathbb{C}[N_K]\) define a new pair \((\hat{x}, \hat{B})\) of \(\mathbb{C}[G/P^\perp_K]\) by raising each variable \(x\) of \((x, B)\) to the variable \(\tilde{x}\) preserving the same type (mutable or frozen) and by adding the generalized minors \(\Delta_{\omega_j, \omega_j}\) modded out in \(\mathbb{C}[N_K]\) as frozen variables. The matrix \(\hat{B}\) of this lift is obtained as follows: Extend the matrix \(B\) of the construction of Goodearl and Yakimov by \(|J|\) rows labeled by the elements of \(J\) such that the entries are

\[
\hat{b}_{jk} = \begin{cases}
\beta_j, & \text{if } \beta_j \neq 0; \\
-\alpha_j, & \text{else},
\end{cases}
\]

where \(\alpha_j\) and \(\beta_j\) are as in the previous remark.
Theorem (F.K.)

Let \(\{(x, B)\} \) be the collection of seeds of the cluster algebra \(\mathcal{A}_J \) of \(\mathbb{C}[N_K] \). The corresponding collection \(\{\widehat{(x, B)}\} \) constructed above forms a valid collection of seeds. In other words, if \((x, B) \) and \((x', B') \) are two seeds of the coordinate ring of the cell \(\mathbb{C}[N_K] \) such that \((x', B') = \mu_k(x, B) \), then correspondingly \((\widehat{x}', \widehat{B}') = \mu_k(\widehat{x}, \widehat{B}) \).
Proof idea: For the matrix \hat{B} we use entries from

$$\tilde{x}_k \tilde{x}'_k = \mu_k \tilde{M}_k + \nu_k \tilde{L}_k.$$

So, for the mutation we should show that the mutated matrix entries match the ones coming from

$$\tilde{x}'_t \tilde{x}''_t = \mu'_t \tilde{M}'_t + \nu'_t \tilde{L}'_t.$$

Equivalently, we may assumed that μ'_t and ν'_t are as we want and then show that $\mu'_t \tilde{M}'_t + \nu'_t \tilde{L}'_t$, is an element whose proj is $\tilde{M}'_t + \tilde{L}'_t$ and whose order is minimal with respect to \leq. This can be done using the derivation properties of the Chevally generator e_i.
Corollary

Let B be the matrix \tilde{B}^w of Goodearl and Yakimov. The pair

$$\left(\{\tilde{D}_{\omega_{ik}, w \leq k \omega_{ik}}\} \sqcup \{\Delta_{\omega_j, \omega_j} \mid j \in J\}, \hat{B}\right)$$

is an initial seed of a cluster algebra $\hat{A} \subset \mathbb{C}[G/P_K]$.
So we have now:

1. The coordinate ring of a Schubert cell has a cluster algebra structure \mathcal{A}. ✓

2. The cluster algebra \mathcal{A} of the previous step can be lifted to some special cluster algebra $\hat{\mathcal{A}}$ that lives in the coordinate ring of the partial flag variety corresponding to the coordinate ring of the cell of the previous step. ✓

3. The cluster algebra $\hat{\mathcal{A}}$ is equal to the coordinate ring of the partial flag variety, up to localization by non-minuscule minors indexed by $j \in J$.

Theorem (F.K.)

The localization of the homogeneous coordinate ring of the flag variety $\mathbb{C}[G/P_K]$ by $\Delta_{\varpi_j, \varpi_j}, (j \in J)$ equals the localization of the cluster algebra \hat{A} by the same elements. Namely,

\[
\mathbb{C}[G/P_K][\Delta_{\varpi_j, \varpi_j}]_{j \in J} = \hat{A}[\Delta_{\varpi_j, \varpi_j}]_{j \in J}.
\]
Proof idea:

- Take \(f \in \mathbb{C}[G/P_K][\Delta_{\omega_j,\omega_j}]_{j \in J} \) such that \(f \notin \hat{A}[\Delta_{\omega_j,\omega_j}]_{j \in J} \) and it is of minimal degree.
- Obtain a contradiction.
Thus, omitting the non-minuscule restriction on minors, we now get:

1. The coordinate ring of a Schubert cell has a cluster algebra structure \mathcal{A}. ✓

2. The cluster algebra \mathcal{A} of the previous step can be lifted to some special cluster algebra $\hat{\mathcal{A}}$ that lives in the coordinate ring of the partial flag variety corresponding to the coordinate ring of the cell of the previous step. ✓

3. The cluster algebra $\hat{\mathcal{A}}$ is equal to the coordinate ring of the partial flag variety, up to localization by minors indexed by $j \in J$. ✓
Example

Let G be a semisimple algebraic group of type B_3, say $G = SO_{2(3)+1} = SO_7$, $J = \{3\}$ and $K = I \setminus J = \{1, 2\}$. Consider the longest word

$$w_0 = s_1 s_2 s_1 s_3 s_2 s_1 s_3 s_2 s_3$$

Consider $w = s_3 s_2 s_1 s_3 s_2 s_3$. Since $s(3) = s(5) = s(6) = \infty$ and $s(k) \neq \infty$ for $k \in \{1, 2, 4\}$, we get that the mutable variables are indexed by $1, 2, 4$ and the frozen ones are indexed by $3, 5, 6$ using the function s. Therefore, the exchange matrix of the cluster algebra structure of $\mathbb{C}[N_K]$ is
A cluster structure on $\mathbb{C}[G/P_K]$

Example

\[
\begin{pmatrix}
1 & 2 & 4 \\
0 & a_{i_1 i_2} & 1 \\
-a_{i_2 i_1} & 0 & a_{i_2 i_4} \\
-1 & -a_{i_4 i_2} & 0 \\
-a_{i_3 i_1} & -a_{i_3 i_2} & 0 \\
0 & -1 & -a_{i_5 i_4} \\
0 & 0 & -1
\end{pmatrix}
\]
Example

\[
\begin{pmatrix}
1 & 2 & 4 \\
0 & -2 & 1 \\
1 & 0 & -1 \\
-1 & 2 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
1 \\
2 \\
1 \\
4 \\
3 \\
5 \\
6
\end{pmatrix}
\]
A cluster structure on $\mathbb{C}[G/P^-_K]$.

Example

where the column labels denote the cluster variables and the row labels denote the extended cluster variables, as usual. Also, the extended cluster variables $D_{\varpi_{ij}, w \leq j \varpi_{ij}}$ are

<table>
<thead>
<tr>
<th>j</th>
<th>$D_{\varpi_{ij}, w \leq j \varpi_{ij}}$</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$D_{\varpi_3, s_3 \varpi_3}$</td>
<td>(mutable)</td>
</tr>
<tr>
<td>2</td>
<td>$D_{\varpi_2, s_3 s_2 \varpi_2}$</td>
<td>(mutable)</td>
</tr>
<tr>
<td>3</td>
<td>$D_{\varpi_1, s_3 s_2 s_1 \varpi_1}$</td>
<td>(frozen)</td>
</tr>
<tr>
<td>4</td>
<td>$D_{\varpi_3, s_3 s_2 s_1 s_3 \varpi_3}$</td>
<td>(mutable)</td>
</tr>
<tr>
<td>5</td>
<td>$D_{\varpi_2, s_3 s_2 s_1 s_3 s_2 \varpi_2}$</td>
<td>(frozen)</td>
</tr>
<tr>
<td>6</td>
<td>$D_{\varpi_3, s_3 s_2 s_1 s_3 s_2 s_3 \varpi_3}$</td>
<td>(frozen)</td>
</tr>
</tbody>
</table>
Example

Therefore, by the main theorem, the following tuple is an initial extended cluster of $\mathbb{C}[G/P_K^-]$

$$\hat{x} = \left(\tilde{D}_{\omega_3, s_3 s_3}, \tilde{D}_{\omega_2, s_3 s_2 s_2}, \tilde{D}_{\omega_3, s_3 s_2 s_1 s_3}, \tilde{D}_{\omega_1, s_3 s_2 s_1 s_1}, \tilde{D}_{\omega_2, s_3 s_2 s_1 s_3 s_2}, \tilde{D}_{\omega_3, s_3 s_2 s_1 s_3 s_2} \right)$$

such that the first three variables are mutable and the rest are frozen. Consequently, the extended exchange matrix \hat{B} of $\mathbb{C}[G/P_K^-]$ attached to this extended cluster is
A cluster structure on the coordinate ring of partial flag varieties

\[\tilde{D}_{\varpi_1,s_3s_2s_1s_2s_1} = \Delta_{s_3s_2s_1s_2s_1}^{\varpi_1,s_1s_2s_1s_2} \]

\[\tilde{D}_{\varpi_2,s_3s_2s_1s_3s_2} = \Delta_{s_3s_2s_1s_3s_2}^{\varpi_2,s_1s_2s_1s_2} \]

\[\tilde{D}_{\varpi_3,s_3s_2s_1s_3s_2s_3} = \Delta_{s_3s_2s_1s_3s_2s_3}^{\varpi_3,s_1s_2s_1s_2s_1s_2} \]
Example

\[
\hat{B} = \begin{pmatrix}
1 & 2 & 4 \\
0 & -2 & 1 \\
1 & 0 & -1 \\
-1 & 2 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1 \\
-1 & 0 & 0
\end{pmatrix} \quad j \in J
\]
Thank you!

A cluster structure on $\mathbb{C}[G/P_K]$