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Let G be a finite group and V be a finite-dimensional

irreducible representation of G over C. V is called

orthogonal if it admits a non-degenerate G-invariant

symmetric bilinear form.

Equivalently, V is defined over R.

G is called totally orthogonal if all irreducible repre-

sentations V of G are orthogonal.

Example: G is any finite real reflection group.
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Definition: Let V be an irrep of G with character χ.

The nth Frobenius-Schur indicator of V is defined as

νn(V ) :=
1

|G|
∑
g∈G

χ(gn) = χ(
1

|G|
∑
g∈G

gn).

Frobenius-Schur Theorem (1906) ν2(V ) ∈ {0,1,−1}.
ν2(V ) 6= 0 ⇐⇒ V ∗ ∼= V and in that case

ν2(V ) = +1 iff V admits a G-invariant symmetric non-

degenerate bilinear form, and

ν2(V ) = −1 iff the form is skew-symmetric.

ν2(V ) = 0 ⇐⇒ V does not admit a G-invariant non-

degenerate bilinear form

Isaacs (1960): νn(V ) =
1

|G|
∑
g∈G

χ(gn) ∈ Z, all n.

FS, I: For all n,
∑
V

νn(V )dim(V ) = |{x ∈ G | xn = 1}.
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Scharf (1991): For G = Sm, all νn(V ) ≥ 0, for all

irreps V and all n.

Example: Consider the dihedral group D4 and the

quaternion group Q8. Both have a unique 2-dim simple

module, say V1 for D4 and V2 for Q8, and their group

algebras have isomorphic Grothendieck rings. However

ν2(V1) = +1 and ν2(V2) = −1. What is going on?

We will consider C = Rep(G) under ⊗; it is a tensor

category. Among other properties, C has duals, and

in fact V ∗∗ ∼= V for V ∈ C. However one may check

that for the two groups above, the two isomorphisms

V ∗∗1
∼= V1 and V ∗∗2

∼= V2 are different.
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Hopf algebras:

Let H = {H,m, u,∆, ε, S} be a semisimple Hopf algebra

over C. H acts on tensor products of modules via ∆.

That is, if ∆(h) =
∑
h1⊗h2 ∈ H ⊗H, then h · (v⊗w) =∑

h1 · v ⊗ h2 · w.

Writing ∆n−1(h) =
∑
h1 ⊗ h2 ⊗ · · · ⊗ hn,

we define h[n] := m ◦∆n−1(h) =
∑
h1h2 · · ·hn.

For H = kG and g ∈ G, ∆(g) = g ⊗ g and so g[n] = gn.

Λ ∈ H is an integral if hΛ = ε(h)Λ for all h ∈ H. When

H is semisimple, we may choose Λ so that ε(Λ) = 1

Example: H = kG. Then Λ =
1

|G|
∑
g∈G

g,

and Λ[m] =
1

|G|
∑
g∈G

gm.
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Definition: Let V be an irreducible representation of H

with character χ. The nth Frobenius-Schur indicator

of V is νn(V ) := χV (Λ[n]).

Theorem: (Linchenko-M 2000) H a semisimple Hopf

algebra with integral Λ and irrep V . Then

(1) ν2(V ) 6= 0 ⇐⇒ V ∗ ∼= V and in that case,

ν2(V ) = +1 iff V admits an H-invariant symmetric non-

degenerate bilinear form,

ν2(V ) = −1 iff the form is skew-symmetric, and

ν2(V ) = 0 ⇐⇒ V does not admit any H-invariant non-

degenerate bilinear form.

(2)
∑
V

ν2(V ) dim(V ) = Tr(S).
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Theorem: (Kashina-Sommerhäuser-Zhu 06) Consider

the action on V ⊗n of the cyclic permutation α, given

by v1 ⊗ · · · ⊗ vn 7→ vn ⊗ v1 ⊗ · · · ⊗ vn−1.

Then (V ⊗n)H is stable under the action of α, and

νn(V ) := trace(α|(V ⊗n)H).

Thus νn(V ) ∈ On, the ring of nth cyclotomic integers.

Moreover
∑
V νn(V )dim(V ) = Tr(S ◦ Pn−1).

Example: (KSZ) Z9 acts on A4 (and so on CA4) by

conjugation by a fixed 3-cycle. Then H = CA4#CZ9

has an irrep V so ν3(V ) = 1 + ζ3 /∈ Z.
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Applications

1. Exponents: For a Hopf algebra H, the exponent

Exp(H) of H is the smallest positive integer m such

that x[m] = ε(x)1, for all x ∈ H.

Question: For H semisimple, does Exp(H) divide dimH?

True if H commutative or cocommutative (60’s), D(G)

(K 97).

Theorem: (1) (Etingof-Gelaki 99) Exp(H)divides (dimH)3.

(2) (KSZ 06) If a prime p divides dim(H), then p divides

Exp(H)

(2) is a version of Cauchy’s theorem. Their proof uses

indicators
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2. Classification: Dim 8 quasi-Hopf algebras over C

(Masuoka) There are exactly eight semisimple dim 8

Hopf algebras: five group algebras, C(D4)∗, C(Q8)∗,
and the Kac-Palyutkin algebra K8.

(Tambara-Yamagami 98) There are exactly four fu-

sion categories Rep(H) which can arise from a non-

commutative quasi-Hopf algebra H of dim 8.

Three of them are CD8, CQ8, K8. What is the fourth?

For these categories C = Rep(H), Irr(C) = G ∪ {ρ},
where G is finite abelian, gh = hg for all g, h ∈ G, gρ =

ρg = ρ, and ρ2 =
∑
g∈G g. Such categories are called

Tambara-Yamagami categories.

(NSch 05) Construct a quasi-Hopf algebra “twist” (K8)u.

The 2-dim rep V has indicators {ν2(V ), ν4(V )} which do

not match any of the others.
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The Drinfel’d double of a finite group G:

D(G) = kG ./ kG

As an algebra, D(G) is the semi-direct product kG#kG,

where kG is the function algebra and the action of G

on kG is induced from the conjugation action of G on

itself. As a coalgebra, D(G) is the tensor product of

the coalgebras kG and kG.

Representations of D(G) (DPR, Ma 90):

Fix an element u in each conjugacy class of G and

let C(u) be the centralizer of u in G. Let W be an

irreducible C(u)-module and define V := CG⊗CC(u) W.

With a suitable action of CG on V , V is an irreducible

D(G)-module. All irreducible modules arise in this way.
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Recall Scharf proved that for G = Sm, all νn(V ) ≥ 0.

Is this true for D(G)?

(1) (Guralnick-M 09) D(G) is totally orthogonal for any

finite real reflection group G; (K-Mason-M 02) G = Sm.

(2) (Keilberg 10) For H = D(Dm), all νn(V ) ∈ Z≥0.

(3) (Courter 12) For H = D(Sm), m ≤ 12, all νn(V ) ∈
Z≥0. (Schauenburg 15) True for m ≤ 23

Question: For H = D(G), when are all values of

νn(V ) ∈ Z?
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Definition (KSZ): Define

Gn(u, g) := {a ∈ G | (au−1)n = an = g},
where u is in a fixed conjugacy class, W is an irrep of

C = C(u), and V is the induced module for D(G). Let

η be the character of W and χη be the character of V .

Theorem (Iovanov-Mason-M 14): All indicators for

D(G) are in Z ⇐⇒ for all commuting pairs u, g ∈ G

and all n such that gcd(n, |G|) = 1,

|Gn(u, g)| = |Gn(u, gn)|.

Examples: G = PSL2(q), Am, Sm, M11, M12, or if G

is a regular p-group.

False for the Harada-Norton simple group and for the

Monster.
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Tensor categories

We assume here that C is a spherical rigid fusion cat-

egory; that is, C is a semisimple category with a finite

number of simples, and it has duals.

Spherical means that the left and right traces coincide.

For example, consider the category C = V ec of finite-

dim vector spaces over C. The spherical structure j :

V → V ∗∗ is the natural isomorphism of vector spaces,

ev : V ∗ ⊗ V → C is the usual evaluation map and coev :

C → V ⊗ V ∗ is the dual basis map. For any f : V → V ,

the categorical trace of f is the composition map

C→ V ⊗ V ∗ → V ⊗ V ∗ → V ∗∗ ⊗ V → C

where the first map is coev, the second f ⊗ id, the third

j ⊗ id, and the last ev. This trace is identical to the

ordinary trace of f.
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In general a fusion category is determined up to equiva-

lence by its fusion rules and by the “6j symbols”. These

symbols are all the isomorphisms in the tensor category

axioms, Thus the actual isomorphisms

(V ⊗W )⊗X ∼= V ⊗ (W ⊗X)

for V,W,X ∈ C, are important.

A property is a gauge invariant if it is invariant under

equivalence of categories. Ng - Schauenburg 07 show

that FS-indicators can be extended to these categories

using traces, extending KSZ’s definition.

They also showed that indicators are gauge invariants

(done earlier by Mason and Ng for quasi-Hopf algebras.)

Recall a fusion category C is TY if Irr(C) = G ∪ {ρ},
where G is finite abelian, gh = hg for all g, h ∈ G, gρ =

ρg = ρ, and ρ2 =
∑
g∈G g.
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A near group has the same relations as above except

that ρ2 =
∑
g∈G g +mρ, for m = |G| − 1 or k|G|.

Definition (Tucker): A fusion category is FS-indicator

rigid if it is determined by its fusion rules and all of its

indicators.

Theorem (Basak-Johnson 2015): TY-categories are

FS-indicator rigid.

Theorem (Tucker 2015) If C is a near group with m =

|G| − 1, then C is FS-indicator rigid. The same is true

for m = |G| when the center of C is known.

Izumi-Tucker The non-commutative near-group fu-

sion rings also have FS-indicator rigidity.

False for more general categories, such as Haagurup-

Izumi categories
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