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Let G be a finite group and V be a finite-dimensional
irreducible representation of G over C. V is called
orthogonal if it admits a non-degenerate G-invariant
symmetric bilinear form.

Equivalently, V is defined over R.

(G is called totally orthogonal if all irreducible repre-
sentations V of G are orthogonal.

Example: G is any finite real reflection group.



Definition: Let V be an irrep of G with character ¥.
The nt® Frobenius-Schur indicator of V is defined as

(V) = — ) x(¢") = x(— > g™,

|G| gEG |G| gEG

Frobenius-Schur Theorem (1906) v»(V) € {0,1,—1}.
(V) #0 <= V*=1V and in that case

v>(V) = +1 iff V admits a G-invariant symmetric non-
degenerate bilinear form, and

v>(V) = —1 iff the form is skew-symmetric.

v5(V) =0 <= V does not admit a G-invariant non-
degenerate bilinear form

Isaacs (1960): v,(V) = @ > x(¢g™) ez, all n.
geG

FS, I: For all n, Y wvp(V)dim(V) = |[{z € G | 2" = 1}.
|4



Scharf (1991): For G = Sy, all vy (V) > 0, for all
irreps V and all n.

Example: Consider the dihedral group D4 and the
quaternion group g. Both have a unique 2-dim simple
module, say V7 for Dy and Vo for QQg, and their group
algebras have isomorphic Grothendieck rings. However
v>(V1) = 41 and v»(Vo) = —1. What is going on?

We will consider C = Rep(G) under ®; it is a tensor
category. Among other properties, C has duals, and
in fact V** = V for V € C. However one may check
that for the two groups above, the two isomorphisms
Vi* =V and V3* =V, are different.



Hopf algebras:

Let H={H,m,u,A,e,S} be a semisimple Hopf algebra
over C. H acts on tensor products of modules via A.
Thatis, if A(h) =>h1®hr € HQ H, then h-(vQw) =
> h1-v® ho - w.

Writing A" 1A =S hi Q@ho ® -+ @ han,
we define bl :=m o A" 1(R) = S hiho - hp.
For H=kG and g € G, A(g) = g® g and so g[”] = g".

N\ € H is an integral if hA = e(h)A\ for all h € H. When
H is semisimple, we may choose A so that e(A) =1

1
Example: H =kG. Then AN = —

> g,

1
and Alml = = > g™
|G| gGG



Definition: Let V be an irreducible representation of H
with character x. The nt® Frobenius-Schur indicator
of V is vn(V) := xy (A1),

Theorem: (Linchenko-M 2000) H a semisimple Hopf
algebra with integral A and irrep V. Then

(1) (V) #0 <= V* =1V and in that case,

v>(V) = 41 iff V admits an H-invariant symmetric non-
degenerate bilinear form,

v>(V) = —1 iff the form is skew-symmetric, and

v>(V) =0 <= V does not admit any H-invariant non-
degenerate bilinear form.

(2) ZI/Q(V) dim(V) =Tr(S).
%4



Theorem: (Kashina-Sommerhauser-Zhu 06) Consider
the action on V®" of the cyclic permutation «, given
by V1@ - QUn > n QU1 Q- QUp_1.

Then (VO s stable under the action of «, and

v (V) 1= trace(q] (V®”)H)'

Thus vn(V) € Oy, the ring of n!"® cyclotomic integers.
Moreover > v vp(V)dim(V) =Tr(So P,_1).

Example: (KSZ) Zg acts on A4 (and so on C44) by
conjugation by a fixed 3-cycle. Then H = CA4#CZq
has an irrep V so v3(V) =14 (3 ¢ Z.



Applications

1. Exponents: For a Hopf algebra H, the exponent
Exp(H) of H is the smallest positive integer m such
that zl™ = ¢(2)1, for all z € H.

Question: For H semisimple, does Exp(H) divide dimH?

True if H commutative or cocommutative (60's), D(G)
(K 97).

Theorem: (1) (Etingof-Gelaki 99) Exp(H)divides (dimH)3.
(2) (KSZ 06) If a prime p divides dim(H), then p divides
Exp(H)

(2) is a version of Cauchy’s theorem. Their proof uses
indicators



2. Classification: Dim 8 quasi-Hopf algebras over C

(Masuoka) There are exactly eight semisimple dim 8
Hopf algebras: five group algebras, C(D4)*, C(Qg)*,
and the Kac-Palyutkin algebra Kg.

(Tambara-Yamagami 98) There are exactly four fu-
sion categories Rep(H) which can arise from a non-
commutative quasi-Hopf algebra H of dim 8.

Three of them are CDg, CQg, Kg. What is the fourth?

For these categories C = Rep(H), Irr(C) = G U {p},
where G is finite abelian, gh = hg for all g,h € G, gp =
pg = p, and ,02 = >_geG 9. Such categories are called
Tambara-Yamagami categories.

(NSch 05) Construct a quasi-Hopf algebra “twist” (Kg)¥.
The 2-dim rep V has indicators {vo(V'),v4(V)} which do
not match any of the others.



The Drinfel’d double of a finite group G:
D(G) = k% < kG

As an algebra, D(Q) is the semi-direct product kC#kG,
where kG is the function algebra and the action of G
on k% is induced from the conjugation action of G on
itself. As a coalgebra, D(G) is the tensor product of
the coalgebras k& and kG.

Representations of D(G) (DPR, Ma 90):

Fix an element v in each conjugacy class of G and
let C'(u) be the centralizer of v in G. Let W be an
irreducible C'(u)-module and define V := CG ®cc(y) W-
With a suitable action of C& on V, V is an irreducible
D(G)-module. All irreducible modules arise in this way.



Recall Scharf proved that for G = S, all v, (V) > 0.
Is this true for D(G)7

(1) (Guralnick-M 09) D(G) is totally orthogonal for any
finite real reflection group G; (K-Mason-M 02) G = Sj,.

(2) (Keilberg 10) For H = D(Dp,), all vp(V) € Z>p.

(3) (Courter 12) For H = D(Sm), m < 12, all vp(V) €
Z>q. (Schauenburg 15) True for m < 23

Question: For H = D(G), when are all values of



Definition (KSZ): Define

Gn(u,g) :={a€ G | (au™H)" = a" = g},

where u is in a fixed conjugacy class, W is an irrep of
C = C(u), and V is the induced module for D(G). Let
n be the character of W and x, be the character of V.

Theorem (Iovanov-Mason-M 14): All indicators for
D(G) are in Z <= for all commuting pairs u,g € G
and all n such that ged(n, |G|) =1,

Examples: G = PSL>(q), Am, Sm, M11, Mo, or if G
IS a regular p-group.

False for the Harada-Norton simple group and for the
Monster.



Tensor categories

We assume here that C is a spherical rigid fusion cat-
egory; that is, C is a semisimple category with a finite
number of simples, and it has duals.

Spherical means that the left and right traces coincide.
For example, consider the category C = Vec of finite-
dim vector spaces over C. The spherical structure j5 :
V — V** is the natural isomorphism of vector spaces,
ev: V*®V — C is the usual evaluation map and coev :
C -V ®V™*is the dual basis map. Forany f:V —V,
the categorical trace of f is the composition map

CoVRV VRV s V™RV =C

where the first map is coev, the second f ®:d, the third
7 ®1id, and the last ev. This trace is identical to the
ordinary trace of f.



In general a fusion category is determined up to equiva-
lence by its fusion rules and by the “6j symbols”. These
symbols are all the isomorphisms in the tensor category
axioms, Thus the actual isomorphisms

(Vo)X =2Ve(WeX)
for V,W, X € C, are important.

A property is a gaugde invariant if it is invariant under
equivalence of categories. Ng - Schauenburg 07 show
that FS-indicators can be extended to these categories
using traces, extending KSZ's definition.

They also showed that indicators are gauge invariants
(done earlier by Mason and Ng for quasi-Hopf algebras.)

Recall a fusion category C is TY if Irr(C) = G U {p},
where G is finite abelian, gh = hg for all g,h € G, gp =

pg =p, and p% =3 g.



A near group has the same relations as above except
that p? =Y cq g+ mp, for m = |G| — 1 or k|G|.

Definition (Tucker): A fusion category is FS-indicator
rigid if it is determined by its fusion rules and all of its
indicators.

Theorem (Basak-Johnson 2015): TY-categories are
FS-indicator rigid.

Theorem (Tucker 2015) If C is a near group with m =
|G| — 1, then C is FS-indicator rigid. The same is true
for m = |G| when the center of C is known.

Izumi-Tucker The non-commutative near-group fu-
sion rings also have FS-indicator rigidity.

False for more general categories, such as Haagurup-
Izumi categories



