Orthogonal Representations: from groups, through Hopf algebras, to tensor categories

Susan Montgomery

Woods Hole 2019

Let G be a finite group and V be a finite-dimensional irreducible representation of G over $\mathbb{C} . \quad V$ is called orthogonal if it admits a non-degenerate G-invariant symmetric bilinear form.

Equivalently, V is defined over \mathbb{R}.
G is called totally orthogonal if all irreducible representations V of G are orthogonal.

Example: G is any finite real reflection group.

Definition: Let V be an irrep of G with character χ. The $\mathbf{n}^{t h}$ Frobenius-Schur indicator of V is defined as

$$
\nu_{n}(V):=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{n}\right)=\chi\left(\frac{1}{|G|} \sum_{g \in G} g^{n}\right)
$$

Frobenius-Schur Theorem (1906) $\nu_{2}(V) \in\{0,1,-1\}$. $\nu_{2}(V) \neq 0 \Longleftrightarrow V^{*} \cong V$ and in that case $\nu_{2}(V)=+1$ iff V admits a G-invariant symmetric nondegenerate bilinear form, and
$\nu_{2}(V)=-1$ iff the form is skew-symmetric.
$\nu_{2}(V)=0 \Longleftrightarrow V$ does not admit a G-invariant nondegenerate bilinear form

Isaacs (1960): $\nu_{n}(V)=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{n}\right) \in \mathbb{Z}$, all n.
FS, I: For all $n, \sum_{V} \nu_{n}(V) \operatorname{dim}(V)=\mid\left\{x \in G \mid x^{n}=1\right\}$.

Scharf (1991): For $G=S_{m}$, all $\nu_{n}(V) \geq 0$, for all irreps V and all n.

Example: Consider the dihedral group D_{4} and the quaternion group Q_{8}. Both have a unique 2-dim simple module, say V_{1} for D_{4} and V_{2} for Q_{8}, and their group algebras have isomorphic Grothendieck rings. However $\nu_{2}\left(V_{1}\right)=+1$ and $\nu_{2}\left(V_{2}\right)=-1$. What is going on?

We will consider $\mathcal{C}=\operatorname{Rep}(G)$ under \otimes; it is a tensor category. Among other properties, \mathcal{C} has duals, and in fact $V^{* *} \cong V$ for $V \in \mathcal{C}$. However one may check that for the two groups above, the two isomorphisms $V_{1}^{* *} \cong V_{1}$ and $V_{2}^{* *} \cong V_{2}$ are different.

Hopf algebras:

Let $H=\{H, m, u, \Delta, \varepsilon, S\}$ be a semisimple Hopf algebra over \mathbb{C}. H acts on tensor products of modules via Δ. That is, if $\Delta(h)=\sum h_{1} \otimes h_{2} \in H \otimes H$, then $h \cdot(v \otimes w)=$ $\sum h_{1} \cdot v \otimes h_{2} \cdot w$.

Writing $\Delta^{n-1}(h)=\sum h_{1} \otimes h_{2} \otimes \cdots \otimes h_{n}$, we define $h^{[n]}:=m \circ \Delta^{n-1}(h)=\sum h_{1} h_{2} \cdots h_{n}$. For $H=k G$ and $g \in G, \Delta(g)=g \otimes g$ and so $g^{[n]}=g^{n}$.
$\wedge \in H$ is an integral if $h \wedge=\varepsilon(h) \wedge$ for all $h \in H$. When H is semisimple, we may choose Λ so that $\varepsilon(\Lambda)=1$

Example: $H=k G$. Then $\wedge=\frac{1}{|G|} \sum_{g \in G} g$,
and $\wedge^{[m]}=\frac{1}{|G|} \sum_{g \in G} g^{m}$.

Definition: Let V be an irreducible representation of H with character χ. The $\mathbf{n}^{\text {th }}$ Frobenius-Schur indicator of V is $\nu_{n}(V):=\chi_{V}\left(\wedge^{[n]}\right)$.

Theorem: (Linchenko-M 2000) H a semisimple Hopf algebra with integral \wedge and irrep V. Then
(1) $\nu_{2}(V) \neq 0 \Longleftrightarrow V^{*} \cong V$ and in that case, $\nu_{2}(V)=+1$ iff V admits an H-invariant symmetric nondegenerate bilinear form,
$\nu_{2}(V)=-1$ iff the form is skew-symmetric, and
$\nu_{2}(V)=0 \Longleftrightarrow V$ does not admit any H-invariant nondegenerate bilinear form.
(2) $\sum_{V} \nu_{2}(V) \operatorname{dim}(V)=\operatorname{Tr}(S)$.

Theorem: (Kashina-Sommerhäuser-Zhu 06) Consider the action on $V^{\otimes n}$ of the cyclic permutation α, given by $\quad v_{1} \otimes \cdots \otimes v_{n} \mapsto v_{n} \otimes v_{1} \otimes \cdots \otimes v_{n-1}$.
Then $\left(V^{\otimes n}\right)^{H}$ is stable under the action of α, and

$$
\nu_{n}(V):=\operatorname{trace}\left(\left.\alpha\right|_{\left.\left(V^{\otimes n}\right)^{H}\right)} .\right.
$$

Thus $\nu_{n}(V) \in \mathcal{O}_{n}$, the ring of $n^{\text {th }}$ cyclotomic integers. Moreover $\quad \sum_{V} \nu_{n}(V) \operatorname{dim}(V)=\operatorname{Tr}\left(S \circ P_{n-1}\right)$.

Example: $(\mathbf{K S Z}) \mathbb{Z}_{9}$ acts on A_{4} (and so on $\mathbb{C}^{A_{4}}$) by conjugation by a fixed 3-cycle. Then $H=\mathbb{C}^{A_{4}} \# \mathbb{C Z}_{9}$ has an irrep V so $\nu_{3}(V)=1+\zeta_{3} \notin \mathbb{Z}$.

Applications

1. Exponents: For a Hopf algebra H, the exponent $\operatorname{Exp}(H)$ of H is the smallest positive integer m such that $x^{[m]}=\varepsilon(x) 1$, for all $x \in H$.

Question: For H semisimple, does $\operatorname{Exp}(H)$ divide $\operatorname{dim} H$?

True if H commutative or cocommutative (60's), $D(G)$ (K 97).

Theorem: (1) (Etingof-Gelaki 99) Exp (H) divides $(\operatorname{dim} H)^{3}$.
(2) (KSZ 06) If a prime p divides $\operatorname{dim}(H)$, then p divides $\operatorname{Exp}(H)$
(2) is a version of Cauchy's theorem. Their proof uses indicators
2. Classification: Dim 8 quasi-Hopf algebras over \mathbb{C}
(Masuoka) There are exactly eight semisimple dim 8 Hopf algebras: five group algebras, $\mathbb{C}\left(D_{4}\right)^{*}, \mathbb{C}\left(Q_{8}\right)^{*}$, and the Kac-Palyutkin algebra K_{8}.
(Tambara-Yamagami 98) There are exactly four fusion categories $\operatorname{Rep}(H)$ which can arise from a noncommutative quasi-Hopf algebra H of dim 8.
Three of them are $\mathbb{C} D_{8}, \mathbb{C} Q_{8}, K_{8}$. What is the fourth?

For these categories $\mathcal{C}=\operatorname{Rep}(H), \operatorname{Irr}(\mathcal{C})=G \cup\{\rho\}$, where G is finite abelian, $g h=h g$ for all $g, h \in G, g \rho=$ $\rho g=\rho$, and $\rho^{2}=\sum_{g \in G} g$. Such categories are called Tambara-Yamagami categories.
(NSch 05) Construct a quasi-Hopf algebra "twist" $\left(K_{8}\right)^{u}$. The 2-dim rep V has indicators $\left\{\nu_{2}(V), \nu_{4}(V)\right\}$ which do not match any of the others.

The Drinfel'd double of a finite group G :

$$
D(G)=k^{G} \bowtie k G
$$

As an algebra, $D(G)$ is the semi-direct product $k^{G} \# k G$, where k^{G} is the function algebra and the action of G on k^{G} is induced from the conjugation action of G on itself. As a coalgebra, $D(G)$ is the tensor product of the coalgebras k^{G} and $k G$.

Representations of $D(G)$ (DPR, Ma 90):
Fix an element u in each conjugacy class of G and let $C(u)$ be the centralizer of u in G. Let W be an irreducible $C(u)$-module and define $V:=\mathbb{C} G \otimes_{\mathbb{C} C(u)} W$. With a suitable action of \mathbb{C}^{G} on V, V is an irreducible $D(G)$-module. All irreducible modules arise in this way.

Recall Scharf proved that for $G=S_{m}$, all $\nu_{n}(V) \geq 0$. Is this true for $D(G)$?
(1) (Guralnick-M 09) $D(G)$ is totally orthogonal for any finite real reflection group G; (K-Mason-M 02) $G=S_{m}$.
(2) (Keilberg 10) For $H=D\left(D_{m}\right)$, all $\nu_{n}(V) \in \mathbb{Z}_{\geq 0}$.
(3) (Courter 12) For $H=D\left(S_{m}\right), m \leq 12$, all $\nu_{n}(V) \in$ $\mathbb{Z}_{\geq 0}$. (Schauenburg 15) True for $m \leq 23$

Question: For $H=D(G)$, when are all values of $\nu_{n}(V) \in \mathbb{Z}$?

Definition (KSZ): Define
$G_{n}(u, g):=\left\{a \in G \mid\left(a u^{-1}\right)^{n}=a^{n}=g\right\}$,
where u is in a fixed conjugacy class, W is an irrep of $C=C(u)$, and V is the induced module for $D(G)$. Let η be the character of W and χ_{η} be the character of V.

Theorem (Iovanov-Mason-M 14): All indicators for $D(G)$ are in $\mathbb{Z} \Longleftrightarrow$ for all commuting pairs $u, g \in G$ and all n such that $\operatorname{gcd}(n,|G|)=1$,

$$
\left|G_{n}(u, g)\right|=\left|G_{n}\left(u, g^{n}\right)\right| .
$$

Examples: $G=P S L_{2}(q), A_{m}, S_{m}, M_{11}, M_{12}$, or if G is a regular p-group.

False for the Harada-Norton simple group and for the Monster.

Tensor categories

We assume here that \mathcal{C} is a spherical rigid fusion category; that is, \mathcal{C} is a semisimple category with a finite number of simples, and it has duals.

Spherical means that the left and right traces coincide. For example, consider the category $\mathcal{C}=V e c$ of finitedim vector spaces over \mathbb{C}. The spherical structure j : $V \rightarrow V^{* *}$ is the natural isomorphism of vector spaces, $e v: V^{*} \otimes V \rightarrow \mathbb{C}$ is the usual evaluation map and coev: $\mathbb{C} \rightarrow V \otimes V^{*}$ is the dual basis map. For any $f: V \rightarrow V$, the categorical trace of f is the composition map

$$
\mathbb{C} \rightarrow V \otimes V^{*} \rightarrow V \otimes V^{*} \rightarrow V^{* *} \otimes V \rightarrow \mathbb{C}
$$

where the first map is coev, the second $f \otimes i d$, the third $j \otimes i d$, and the last $e v$. This trace is identical to the ordinary trace of f.

In general a fusion category is determined up to equivalence by its fusion rules and by the " 6 j symbols". These symbols are all the isomorphisms in the tensor category axioms, Thus the actual isomorphisms

$$
(V \otimes W) \otimes X \cong V \otimes(W \otimes X)
$$

for $V, W, X \in \mathcal{C}$, are important.

A property is a gauge invariant if it is invariant under equivalence of categories. Ng - Schauenburg 07 show that FS-indicators can be extended to these categories using traces, extending KSZ's definition.
They also showed that indicators are gauge invariants (done earlier by Mason and Ng for quasi-Hopf algebras.)

Recall a fusion category \mathcal{C} is $\mathbf{T Y}$ if $\operatorname{Irr}(\mathcal{C})=G \cup\{\rho\}$, where G is finite abelian, $g h=h g$ for all $g, h \in G, g \rho=$ $\rho g=\rho$, and $\rho^{2}=\sum_{g \in G} g$.

A near group has the same relations as above except that $\rho^{2}=\sum_{g \in G} g+m \rho$, for $m=|G|-1$ or $k|G|$.

Definition (Tucker): A fusion category is FS-indicator rigid if it is determined by its fusion rules and all of its indicators.

Theorem (Basak-Johnson 2015): TY-categories are FS-indicator rigid.

Theorem (Tucker 2015) If \mathcal{C} is a near group with $m=$ $|G|-1$, then \mathcal{C} is FS -indicator rigid. The same is true for $m=|G|$ when the center of \mathcal{C} is known.

Izumi-Tucker The non-commutative near-group fusion rings also have FS-indicator rigidity.

False for more general categories, such as HaagurupIzumi categories

