Shapes of the irreducible morphisms and Auslander-Reiten Triangles in the stable category of modules over repetitive algebras

Hernán Giraldo

Instituto de Matemáticas
Facultad de Ciencias Exactas y Naturales

Maurice Auslander Distinguished Lectures and International Conference
Northeastern University
Woods Hole, Massachusetts, USA

April 24-29, 2019
joint with

Yohny Calderón-Henao* and José A. Vélez-Marulanda**

* Instituto de Matemáticas, Universidad de Antioquia, Medellín, Colombia.

** Department of Mathematics, Valdosta State University, Valdosta, GA, United States.

Part of this research was performed at the Valdosta State University and the Universidad Nacional Autónoma de Mexico, Morelia.
Road map

1. Category of modules over repetitive algebras
2. Shapes of the irreducible morphisms
3. Shapes of Auslander-Reiten Triangles
4. Referencias

Hernán Giraldo, Medellín, Colombia

Irreducibles and Auslander-Reiten Triangles
1. Category of modules over repetitive algebras

2. Shapes of the irreducible morphisms

3. Shapes of Auslander-Reiten Triangles

4. Referencias
Let A be a finite-dimensional k-algebra over field k.

For simplicity, we assume that A is basic and k is algebraically closed.

Denote by $D = \text{Hom}_k(-, k)$ the standard duality on A-mod.

Let us construct the repetitive algebra \hat{A} of A as proposed by D. Hughes and J. Waschbüsch (1983).

- The underlying vector space of repetitive algebra \hat{A} is given by
 \[
 \hat{A} = (\bigoplus_{i \in \mathbb{Z}} A) \oplus (\bigoplus_{i \in \mathbb{Z}} DA),
 \]
 \[
 \hat{a} = (a_i, \varphi_i)_{i \in \mathbb{Z}} \text{ with } a_i \in A, \varphi_i \in DA \text{ and almost all } a_i, \varphi_i \text{ being zero.}
 \]

- The multiplication is defined by
 \[
 \hat{a} \cdot \hat{b} = (a_i, \varphi_i)_{i \in \mathbb{Z}} \cdot (b_i, \psi_i)_{i \in \mathbb{Z}} = (a_i b_i, a_i+1 \psi_i + \varphi_i b_i)_{i \in \mathbb{Z}}.
 \]
A \(\hat{A} \)-module \(M = (M_i, f_i)_{i \in \mathbb{Z}} \), where the \(M_i \) are \(A \)-modules, all but finitely many being zero (finitely generated left module), the \(f_i \) are \(A \)-homomorphims \(f_i : DA \otimes_A M_i \to M_{i+1} \), such that \(f_{i+1}(1 \otimes f_i) = 0 \) for all \(i \in \mathbb{Z} \).

Instead of \(M = (M_i, f_i)_{i \in \mathbb{Z}} \) we also write:

\[
M : \quad \cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots
\]
A \hat{A}-module $M = (M_i, f_i)_{i \in \mathbb{Z}}$, where the M_i are A-modules, all but finitely many being zero (finitely generated left module), the f_i are A-homomorphims $f_i : DA \otimes_A M_i \longrightarrow M_{i+1}$, such that $f_{i+1}(1 \otimes f_i) = 0$ for all $i \in \mathbb{Z}$.

Instead of $M = (M_i, f_i)_{i \in \mathbb{Z}}$ we also write:

$$M : \quad \cdots \longrightarrow M_{i-1} \overset{f_{i-1}}{\longrightarrow} M_i \overset{f_i}{\longrightarrow} M_{i+1} \longrightarrow \cdots$$
A \hat{A}-homomorphism $h : M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ between \hat{A}-modules is a sequence $h = (h_i)_{i \in \mathbb{Z}}$ of A-homomorphims

$$DA \otimes_A M_i \xrightarrow{f_i} M_{i+1} \xrightarrow{h_i+1} N_i \xrightarrow{g_i} N_{i+1}.$$

Instead of $h = (h_i)_{i \in \mathbb{Z}} : M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ we also write:

$$M : \cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{h_i} M_{i+1} \xrightarrow{h_{i+1}} \cdots$$

$$N : \cdots \longrightarrow N_{i-1} \xrightarrow{g_{i-1}} N_i \xrightarrow{g_i} N_{i+1} \xrightarrow{\cdots} \cdots.$$
A \hat{A}-homomorphism $h : M = (M_i, f_i)_{i \in \mathbb{Z}} \rightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ between \hat{A}-modules is a sequence $h = (h_i)_{i \in \mathbb{Z}}$ of A-homomorphims

$$
\begin{align*}
DA \otimes_A M_i & \xrightarrow{f_i} M_{i+1} \\
1 \otimes h_i & \downarrow \quad h_{i+1} \\
DA \otimes_A N_i & \xrightarrow{g_i} N_{i+1}.
\end{align*}
$$

Instead of $h = (h_i)_{i \in \mathbb{Z}} : M = (M_i, f_i)_{i \in \mathbb{Z}} \rightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$ we also write:

$$
\begin{align*}
M : \quad & \cdots \xrightarrow{f_{i-1}} M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_i} M_{i+1} \xrightarrow{f_i} \cdots \\
& \downarrow h_{i-1} \quad h_i \quad h_{i+1} \\
N : \quad & \cdots \xrightarrow{g_{i-1}} N_{i-1} \xrightarrow{g_i} N_i \xrightarrow{g_i} N_{i+1} \xrightarrow{g_i} \cdots.
\end{align*}
$$
We denoted by \hat{A}-mod the category of finitely generated left modules over the repetitive algebra A.

We denoted by \hat{A}-mod the stable category of \hat{A}-mod.
Section

1. Category of modules over repetitive algebras

2. Shapes of the irreducible morphisms

3. Shapes of Auslander-Reiten Triangles

4. Referencias
Definition

An \widehat{A}-homomorphism $h = (h_i)_{i \in \mathbb{Z}} : M = (M_i, f_i)_{i \in \mathbb{Z}} \rightarrow N = (N_i, g_i)_{i \in \mathbb{Z}}$:

1. is called smonic (resp. sepic) if all its components h_i are split monomorphisms (resp. split epimorphisms) and

2. is called sirreducible if there is exactly one index i_0 such that h_{i_0} is irreducible morphism and h_i is a split epimorphism for $i < i_0$ and a split monomorphism for $i > i_0$.
Shapes of the irreducible morphisms

Theorem (-, 2017, [2])

Let \(h : M = (M_i, f_i)_{i \in \mathbb{Z}} \rightarrow N = (N_i, g_i)_{i \in \mathbb{Z}} \) be an irreducible homomorphism in \(\hat{A} \)-mod. Then one of the following conditions holds:

1. \(h \) is a smonic morphism;
2. \(h \) is a sepic morphism;
3. \(h \) is a sirreducible morphism.
Irreducible smonic

\[
\begin{array}{cccccccc}
M_{a-1} & \xrightarrow{f_{a-1}} & M_a & \xrightarrow{f_a} & M_{a+1} & \cdots & \xrightarrow{f_{b-1}} & M_b & \xrightarrow{f_b} & M_{b+1} \\
\downarrow 1 & & \downarrow (1,0)^t & & \downarrow (1,0)^t & & \downarrow (1,0)^t & & \downarrow (1,0)^t \\
M_{a-1} & \xrightarrow{d_{a-1}} & M_a & \xrightarrow{d_a} & M_{a+1} & \cdots & \xrightarrow{d_{b-1}} & M_b & \xrightarrow{d_b} & M_{b+1} \\
\end{array}
\]

where \(h_{[a,b]} \) is the mono heart of \(h \).

For all \(i < a - 1 \) we have that \(d_i = f_i \) and \(d_{a-1} = (f_{a-1}, 0)^t \).

For \(a \leq i < b \),

\[
d_i = \begin{pmatrix}
 f_i & b_i \\
 0 & \overline{g_i}
\end{pmatrix}, \text{ with } b_i \neq 0 \text{ for all } a \leq i < b.
\]

For all \(i \geq b \),

\[
d_i = \begin{pmatrix}
 f_i & 0 \\
 0 & \overline{g_i}
\end{pmatrix}.
\]
Irreducible sepic

\[
\begin{array}{ccccccccc}
N_{a-1} \oplus M'_{a-1} & \xrightarrow{d_{a-1}} & N_a \oplus M'_{a} & \xrightarrow{d_a} & N_{a+1} \oplus M'_{a+1} & \cdots & & & \xrightarrow{d_b} & N_{b+1} \\
\downarrow (1,0) & & \downarrow (1,0) & & \downarrow (1,0) & & \downarrow (1,0) & & \downarrow 1 \\
\cdots N_{a-1} & \xrightarrow{g_{a-1}} & N_a & \xrightarrow{g_{a}} & N_{a+1} & \cdots & & & \xrightarrow{g_{b}} & N_{b+1}
\end{array}
\]

where \(h_{[a,b]}\) is the epi heart of \(h\).

For all \(i > b\), we have that \(d_i = g_i\) and \(d_b = (g_b, 0)\).

For \(a \leq i < b\),

\[
d_i = \begin{pmatrix} g_i & 0 \\ c_i & f'_i \end{pmatrix}, \text{ with } c_i \neq 0 \text{ for all } a \leq i < b.
\]

For all \(i < a\),

\[
d_i = \begin{pmatrix} g_i & 0 \\ 0 & f'_i \end{pmatrix}.
\]
Irreducible sirreducible (monomorphism)

\[\cdots \rightarrow N_{k-2} \overset{g_{k-2}}{\rightarrow} N_{k-1} \overset{d_{k-1}}{\rightarrow} M_k \overset{f_k}{\rightarrow} M_{k+1} \overset{f_{k+1}}{\rightarrow} M_{k+2} \rightarrow \cdots \]

\[\cdots \rightarrow N_{k-2} \overset{g_{k-2}}{\rightarrow} N_{k-1} \overset{d_{k-1}}{\rightarrow} M_k \overset{f_k}{\rightarrow} M_{k+1} \overset{f_{k+1}}{\rightarrow} M_{k+2} \rightarrow \cdots \]

where \(h_k \) is an irreducible \(A \)-monomorphism.

For \(i > k \),

\[d_i = \begin{pmatrix} f_i & 0 \\ 0 & g_i \end{pmatrix}. \]
Irreducible sirreducible (epimorphism)

\[\cdots \rightarrow N_{k-2} \oplus M'_{k-2} \overset{d_{k-2}}{\rightarrow} N_{k-1} \oplus M'_{k-1} \overset{d_{k-1}}{\rightarrow} M_k \overset{f_k}{\rightarrow} M_{k+1} \overset{f_{k+1}}{\rightarrow} M_{k+2} \rightarrow \cdots \]

\[\downarrow (1,0) \]

\[\cdots \rightarrow N_{k-2} \overset{g_{k-2}}{\rightarrow} N_{k-1} \overset{g_{k-2}}{\rightarrow} N_k \overset{d_k}{\rightarrow} M_k \overset{f_{k+1}}{\rightarrow} M_{k+2} \rightarrow \cdots \]

where \(h_k \) is an irreducible \(A \)-epimorphism.

For \(i < k \),

\[d_i = \begin{pmatrix} g_i & 0 \\ 0 & f'_i \end{pmatrix} \]
Proposition

Let \(h : M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}} \) be a homomorphism in \(\hat{A}\)-mod, such that \(M \) and \(N \) have not projective summands and let \(h \) be its stable class in \(\hat{A}\)-mod. Then, \(h \) is split mono (resp. split epi) if and only if \(h \) is split mono (resp. split epi).

Proposition

Let \(h : M = (M_i, f_i)_{i \in \mathbb{Z}} \longrightarrow N = (N_i, g_i)_{i \in \mathbb{Z}} \) be a homomorphism in \(\hat{A}\)-mod, such that \(M \) and \(N \) have not projective summands and let \(h \) be its stable class in \(\hat{A}\)-mod. Then, \(h \) is irreducible if and only if \(h \) is irreducible.
Section

1. Category of modules over repetitive algebras
2. Shapes of the irreducible morphisms
3. Shapes of Auslander-Reiten Triangles
4. Referencias
Theorem

1. The category $\hat{A}\text{-mod}$ has almost split sequences (1983 D. Hughes and J. Waschbüsch).

2. The category $\hat{A}\text{-mod}$ is a Frobenius, and the category $\hat{A} - \text{mod}$ is triangulated (1988 D. Happel).
Theorem (-, Y. Calderón-Henao, and JA. Vélez-Marulanda, preprint, [1])

Let \(M = (M_i, f_i)_{i \in \mathbb{Z}} \xrightarrow{u} N = (N_i, g_i)_{i \in \mathbb{Z}} \xrightarrow{v} L = (L_i, l_i)_{i \in \mathbb{Z}} \xrightarrow{w} T(M) \) (1)
be an Auslander-Reiten triangle in \(\hat{A} \mod \). Then there exist an almost split sequence

\[
0 \rightarrow M \xrightarrow{u} N \oplus P \xrightarrow{v} L \xrightarrow{w} 0
\]

in \(\hat{A} \mod \), with \(P \) an \(\hat{A} \)–projective module, such that the triangle induce by this sequence is isomorphic to (1). If \(P \neq 0 \), then \(P \) is indecomposable, \(\text{rad}(P) \cong M \), and \(L \cong P / \text{soc}(P) \).
Theorem (-, Y. Calderón-Henao, and JA. Vélez-Marulanda, preprint, [1])

Let \(M = (M_i, f_i)_{i \in \mathbb{Z}} \xrightarrow{u} N = (N_i, g_i)_{i \in \mathbb{Z}} \xrightarrow{v} L = (L_i, l_i)_{i \in \mathbb{Z}} \xrightarrow{w} T(M) \) be an Auslander-Reiten triangle in \(\hat{A} - \text{mod} \). Then

1. If \(u \) is smonic, then \(v \) is sepic.
2. If \(u \) is sepic, then \(v \) is sirreducible.
3. If \(u \) is sirreducible, then \(v \) is smonic or sirreducible.
The quiver of a repetitive algebra

Theorem (1999 J. Schröer)

Let Q be a finite quiver, and let ρ be a set of relations for Q which are either zero-relations or commutativity-relations such that (Q, ρ) is locally bounded. Let $(\hat{Q}, \hat{\rho})$ be constructed as in (1999 J. Schröer). Then $k\hat{Q}/ <\hat{\rho}>$ is the repetitive algebra of $kQ/ <\rho>$.

Theorem (1991 C. M. Ringel and 1999 J. Schröer)

Let A be a finite-dimensional k-algebra. Then

A is gentle if and only if \hat{A} is special biserial.
Example

Let A_1 be the finite dimensional algebra given by the quiver

$$Q: \begin{array}{c}
\bullet & \xleftarrow{\alpha} & \bullet & \xleftarrow{\beta} & \bullet
\end{array}. \ 	ext{The radical series of the indecomposables projective,}
\text{injective and simples left } A_1 \text{-modules are given as follows:}

$$

P_1 = 1, \quad S_2 = 2, \quad S_3 = 3, \quad P_2 = \begin{array}{c} 2 \\ 1 \end{array}, \quad P_3 = \begin{array}{c} 3 \\ 2 \\ 1 \end{array}, \quad I_2 = \begin{array}{c} 3 \\ 2 \end{array}

$$

The Auslander-Reiten quiver of A_1 is the given as follows:

![Auslander-Reiten quiver](image)
Recall that \hat{Q} is given by

\[
\begin{array}{ccc}
1_{z+1} & \xrightarrow{\alpha_{z+1}} & 2_{z+1} \\
& q_{z+1} &
2_z & \xleftarrow{\alpha_z} & 3_z \\
1_z & \xrightarrow{q_z} & 2_{z-1} & \xleftarrow{\alpha_{z-1}} & 3_{z-1}
\end{array}
\]
\begin{align*}
P_{1z} &= \begin{array}{c}
1_z \\
\downarrow \\
3_{z-1}
\end{array} = I_{1z-1}, &
P_{2z} &= \begin{array}{c}
2_z \\
\downarrow \\
1_z
\end{array} = I_{2z-1} \text{ and } &
P_{3z} &= \begin{array}{c}
3_z \\
\downarrow \\
2_z
\end{array} = I_{3z-1}
\end{align*}
The stable Auslander-Reiten quiver of \widehat{A}_1 is given by

```
\begin{align*}
2_z & \xleftarrow{1_z} 3_z & 1_{z+1} & 2_{z+1} & 3_{z+1} \\
1_z & \xleftarrow{2_z} 2_z & 3_z & 1_{z+1} & 2_{z+1} \\
3_{z-1} & \xleftarrow{2_z} 1_z & 3_z & 1_{z+1} & 3_z \\
& \xleftarrow{1_z} 2_z & 3_z & 1_{z+1} & 2_{z+1} \\
& 1_z & 2_z & 3_z & 1_{z+1} & 2_{z+1}
\end{align*}
```
Auslander-Reiten triangle in \mathring{A}_1-mod

\[
\begin{array}{c}
2_z \\
1_z \\
3_z - 1 \\
\downarrow \\
2_z \\
1_z \\
3_z \\
\downarrow \\
2_z \\
1_z \\
\downarrow \\
\end{array}
\xrightarrow{\quad -z \quad} \xrightarrow{\quad -z + 1 \quad}
\begin{array}{c}
2 \\
1 \\
3 \\
\downarrow \\
2 \\
1 \\
\downarrow \\
\end{array}
\xrightarrow{\quad 0 \quad} \xrightarrow{\quad 0 \quad} \xrightarrow{\quad 0 \quad}
\begin{array}{c}
2 \\
1 \\
3 \\
\downarrow \\
2 \\
1 \\
\downarrow \\
\end{array}
\xrightarrow{\quad 0 \quad} \xrightarrow{\quad 0 \quad} \xrightarrow{\quad 0 \quad}
\]

sepic

sirreducible
Auslander-Reiten triangle in $\widehat{A_1}\text{-mod}$

```
3z  \rightarrow  0  \rightarrow  3  \rightarrow  0  \rightarrow  0  \rightarrow  \\
\downarrow  \downarrow  \downarrow  \downarrow  \downarrow  \\
1_{z+1}  \rightarrow  1  \rightarrow  3  \rightarrow  0  \rightarrow  0  \rightarrow  \\
\downarrow  \downarrow  \downarrow  \downarrow  \downarrow  \\
3z  \rightarrow  0  \rightarrow  3  \rightarrow  0  \rightarrow  0  \rightarrow  \\
\downarrow  \downarrow  \downarrow  \downarrow  \downarrow  \\
1_{z+1}  \rightarrow  1  \rightarrow  0  \rightarrow  0  \rightarrow  0  \rightarrow  \\
\downarrow  \downarrow  \downarrow  \downarrow  \downarrow  \\
```

$smonic$

$sepic$
Auslander-Reiten triangle in \widehat{A}_1-mod

\[\begin{array}{c}
- z - 1 \\
0 \\
1 \\
0 \\
0 \\
\end{array} \]

\[\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
\end{array} \]

\[\begin{array}{c}
0 \\
2 \\
0 \\
0 \\
\end{array} \]

$s_{irreducible}$

$s_{irreducible}$
Example

Let $A_2 = kQ/I$ be the finite dimensional algebra given by the quiver $Q := a \xleftarrow{c} 0 \xrightarrow{b} 1$, where $I = \langle a^2, bc, cb \rangle$. We have the quiver \hat{Q} is given by
Auslander-Reiten triangle in $\widehat{A}_2\text{-mod}$

```
\begin{array}{ccc}
0_z & 0_z & 0_z \\
0_z & 1_z & 1_{z-1} \\
1_z & 0_{z-1} & 1_{z-1} \\
0_{z-1} & 0_{z-1} & 1_{z-1} \\
0_{z-1} & 1_{z-1} & 1_{z-2} \\
\end{array}
```

```
\begin{array}{ccc}
-z & -z + 1 & -z + 2 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
```

sirreducible

sirreducible

Irreducibles and Auslander-Reiten Triangles
Auslander-Reiten triangle in $\widehat{A}_2\text{-mod}$

- z
- $z + 1$

Irreducibles and Auslander-Reiten Triangles

Hernán Giraldo, Medellín, Colombia
Thanks
1. Category of modules over repetitive algebras

2. Shapes of the irreducible morphisms

3. Shapes of Auslander-Reiten Triangles

4. Referencias
CALDERÓN-HENAO, Y., GIRALDO, H., AND VÉLEZ-MARULANDA, J. A.
Shapes of Auslander-Reiten Triangles in the stable category of modules over repetitive algebras, preprint.

GIRALDO, H.
Irreducible morphisms between modules over a repetitive algebras.