CMness is determined by inertia groups

Ben Blum-Smith

Maurice Auslander Distinguished Lectures and International Conference

April 28, 2019
G ⊂ S_n acts on \(\mathbb{Z}[x_1, \ldots, x_n] \). Problem: describe invariant subring.

Theorem (Fundamental Theorem on Symmetric Polynomials)

If G = S_n, then

\[
\mathbb{Z}[x_1, \ldots, x_n]^G = \mathbb{Z}[\sigma_1, \ldots, \sigma_n],
\]

where \(\sigma_1 = \sum_i x_i, \sigma_2 = \sum_{i<j} x_i x_j, \) *etc.*

What if \(G \nsubseteq S_n \)?
Permutation invariants

Over \(\mathbb{Q} \):

Theorem (Kronecker 1881)

\[\mathbb{Q}[x_1, \ldots, x_n]^G \text{ is a free module over } \mathbb{Q}[\sigma_1, \ldots, \sigma_n]. \]

Kronecker’s contribution is not well-known, but a modern invariant theorist would see this as an immediate consequence of the Hochster-Eagon theorem.
Example

\[G = \langle (1234) \rangle \subset S_4, \text{ acting on } \mathbb{Q}[x, y, z, w]. \]

\[g_0 = 1 \]
\[g_2 = xz + yw \]
\[g_3 = x^2y + y^2z + \ldots \]
\[g_{4a} = x^2yz + y^2zw + \ldots \]
\[g_{4b} = xy^2z + yz^2w + \ldots \]
\[g_5 = x^2y^2z + y^2z^2w + \ldots \]

is a basis over \(\mathbb{Q}[\sigma_1, \ldots, \sigma_4] \).

\[x^3y^2z + y^3z^2w + \cdots = \frac{1}{2} \sigma_3 g_3 - \frac{1}{2} \sigma_2 g_{4b} + \frac{1}{2} \sigma_1 g_5 \]
Permutation invariants

Statement fails over \(\mathbb{Z} \).

\[
x^3y^2z + y^3z^2w + \cdots = \frac{1}{2}\sigma_3g_3 - \frac{1}{2}\sigma_2g_4b + \frac{1}{2}\sigma_1g_5
\]

Problem

For which \(G \subset S_n \) does the statement of Kronecker’s theorem hold over \(\mathbb{Z} \)?

Equivalent to:

*For which \(G \subset S_n \) is \(k[x_1, \ldots, x_n]^G \) a Cohen-Macaulay ring for any field \(k \)?
Permutation invariants

Known as of 2016:

- If $k[x_1, \ldots, x_n]^G$ is CM and char $k = p$, then G is generated by bireflections and p'-elements. (Gordeev & Kemper '03)
- If $G =$
 - S_n (classical)
 - A_n (classical)
 - $S_n \cong S_n \times S_n \subset S_{2n}$ (Reiner ’90 / ’03), or
 - $S_2 \wr S_n \subset S_{2n}$ (Hersh ’03),

then $k[x_1, \ldots, x_n]^G$ is CM regardless of k.
Permutation invariants

Let $k[x] := k[x_1, \ldots, x_n]$.

Theorem (BBS ’17)

If $G \subset S_n$ is generated by transpositions, double transpositions, and 3-cycles, then $k[x]^G$ is Cohen-Macaulay regardless of k.

Theorem (BBS - Sophie Marques ’18)

The converse is also true.

Compare: Chevalley-Shepard-Todd [cf. Ellen’s talk]
Story of the “only-if” direction

The “if” direction used Stanley-Reisner theory to translate an orbifold result of Christian Lange ("topological Chevalley-Shephard-Todd") into a CMness result for a certain Stanley-Reisner ring $k[\Delta/G]$, and then work of Garsia and Stanton ’84 to translate this into the desired result for $k[\mathfrak{x}]^G$.

By a topological argument, for the Stanley-Reisner ring $k[\Delta/G]$, the “only-if” held too. However, the arguments of Garsia-Stanton do not allow one to transfer this conclusion back to $k[\mathfrak{x}]^G$.

After I defended, Sophie Marques proposed to transfer the argument, rather than the conclusion, from $k[\Delta]^G$ to $k[\mathfrak{x}]^G$.

This necessitated a search for a commutative-algebraic fact to replace each topological fact we used.
Let X be a Hausdorff topological space carrying an action by a finite group G. Let $x \in X$. Let G_x be the stabilizer of x for the action of G. Let X/G be the topological quotient, and let \overline{x} be the image of x in X/G.

Theorem (slice theorem for finite groups)

There is a neighborhood U of x, invariant under G_x, such that U/G_x is homeomorphic to a neighborhood of \overline{x} in X/G.

The name “slice theorem” comes from an analogous result for compact Lie groups.
Local structure in a quotient – slice theorem

What is the commutative-algebraic analogue?

There is an algebraic group analogue to the Lie group slice theorem called *Luna’s étale slice theorem*, but for finite G, there is something much more general.

Let A be a ring with an action of a finite group G.

- $x \in X$ becomes $\mathfrak{P} \triangleleft A$.
- X/G becomes A^G.
- $\bar{x} \in X/G$ becomes $p = \mathfrak{P} \cap A^G$.
- G_x becomes $l_G(\mathfrak{P}) := \{ g \in G : a - ga \in \mathfrak{P}, \ \forall a \in A \}$. (Not $D_G(\mathfrak{P})$!)
- The appropriate analogue for the sufficiently small neighborhood of \bar{x} in X/G is the *strict henselization* of A^G at p.
Let C be a (commutative, unital) ring. Let p be a prime ideal of C. The *strict henselization* of C at p is a local ring C_{p}^{hs} together with a local map $C_p \rightarrow C_{p}^{hs}$ with the following properties:

1. C_{p}^{hs} is a henselian ring.
2. $\kappa(C_{p}^{hs})$ is the separable closure of $\kappa(C_p)$.
3. C_p and C_{p}^{hs} are simultaneously noetherian (resp. CM).
4. $C_p \rightarrow C_{p}^{hs}$ is faithfully flat of relative dimension zero.

C_{p}^{hs} is universal with respect to 1 and 2. It should be viewed as a “very small neighborhood of p in C.”
Local structure in a quotient – slice theorem

Let A be a ring with an action by a finite group G. Let p be a prime of A^G. Let C_p^{hs} be the strict henselization of A^G at p. Define

$$A_p^{hs} := A \otimes_{A^G} C_p^{hs}$$

Note G acts on A_p^{hs} through its action on A.

Let \mathfrak{P} be a prime of A lying over p and let \mathfrak{Q} be a prime of A_p^{hs} pulling back to \mathfrak{P}. Recall $I_G(\mathfrak{P}) := \{g \in G : a - ga \in \mathfrak{P}, \forall a \in A\}$. (Fact: $I_G(\mathfrak{Q}) = I_G(\mathfrak{P})$.)

Theorem (Raynaud ’70)

There is a ring isomorphism $(A_p^{hs})_{\mathfrak{Q}}^{I_G(\mathfrak{P})} \cong C_p^{hs}$.

This is the commutative-algebraic analogue!
Corollary (BBS - Marques ’18)

Assume A^G is noetherian. Then TFAE:

1. A^G is CM.

2. For every prime p of A^G and every Q of A_p^{hs} pulling back to a P of A lying over p,

 $$(A_p^{hs})_{Q}^{I_G}(P)$$

 is CM.

3. For every maximal p of A^G, there is some Q of A_p^{hs} pulling back to a P of A lying over p, such that

 $$(A_p^{hs})_{Q}^{I_G}(P)$$

 is CM.
Back to the permutation group context. Let $k[x] = \mathbb{F}_p[x_1, \ldots, x_n]$, for some prime p to be determined later.

Let N be the subgroup of G generated by transpositions, double transpositions, and 3-cycles.

Goal: prove that, if $N \subseteq G$, for the right choice of p, $k[x]^G$ is not CM.

By above, it suffices to find, when $N \subseteq G$, a $p \triangleleft k[x]^G$ such that the corresponding C_{p}^{hs} is not CM.
Note that G/N acts on $k[x]^N$.

Theorem (BBS - Marques ’18)

If there is a prime \mathfrak{p} of $k[x]^N$ whose inertia group $I_{G/N}(\mathfrak{p})$ is a p-group, then $k[x]^G$ is not CM.

(Recall $k = \mathbb{F}_p$.)

The main ingredients of the proof are:

- the above result which says that CMness at $\mathfrak{p} \cap k[x]^G$ only depends on the action of $I_{G/N}(\mathfrak{p})$ on the appropriate strict henselization.
- a theorem of Lorenz and Pathak ’01 which shows that such $I_{G/N}(\mathfrak{p})$ obstructs CMness.

It also uses the “if” direction to conclude that $k[x]^N$ is CM. The invocation of Lorenz and Pathak needs this.
So the problem is reduced to finding a prime number p and a prime ideal \mathfrak{P} of $k[x]^N$ such that $I_{G/N}(\mathfrak{P})$ is a p-group, when $N \subset G$.

Let Π_n be the poset of partitions of $[n]$, ordered by refinement.

Each $\pi \in \Pi_n$ corresponds to the ideal \mathfrak{P}_π^* of $k[x]$ generated by $x_i - x_j$ for each pair i, j in the same block of π. (Cf. the braid arrangement.)

Let G^B_π be the blockwise stabilizer of π in G, and let $G^B_\pi N/N$ be its image in G/N. If $\mathfrak{P}_\pi = \mathfrak{P}_\pi^* \cap k[x]^N$, one can show that

$$I_{G/N}(\mathfrak{P}_\pi) = G^B_\pi N/N.$$
Permutation invariants - “only-if” direction

So we just need to find \(\pi \) such that \(G^B_\pi N/N \) is a \(p \)-group.

Consider the map

\[
\varphi : G \rightarrow \Pi_n
\]

that sends a permutation \(g \) to the decomposition of \([n]\) into orbits of \(g \).

Proposition (BBS '17)

If \(g \in G \setminus N \) is such that \(\pi = \varphi(g) \) is minimal in \(\varphi(G \setminus N) \), then \(G^B_\pi N/N \) has prime order (and is generated by the image of \(g \)).

If \(N \subsetneq G \), \(G \setminus N \) is nonempty, so such \(g \) exists, and fixing \(p \) as the order of \(G^B_\pi N/N \), we find that \(k[x]^G \) is not CM.
Is there a uniform proof of Lange’s theorem?

Is there a purely algebraic proof of the “if” direction?

Given G not generated by transpositions, double transpositions, and three-cycles, find all the “bad” primes?
Thank you!