Auslander-Reiten sequences for Gorenstein rings of dimension one

Abstract

Let R be a complete local Gorenstein ring of dimension one, with maximal ideal \mathfrak{m} . We show that a particular endomorphism of \mathfrak{m} produces the Auslander-Reiten sequences of maximal Cohen-Macaulay R-modules. We also adapt results due to Zacharia and others, in the setting of Artin algebras, to the situation of maximal Cohen-Macaulay modules over R.

Throughout, R is a Gorenstein complete local ring of dimension one with maximal ideal \mathfrak{m} and $k = R/\mathfrak{m}$. Let CM(R) =the category of maximal Cohen-Macaulay *R*-modules (in our case, $M \in CM(R) \Leftrightarrow M$ embeds in a free *R*-module), and $L_p(R) =$ $\{M \in CM(R) | M_{\mathfrak{p}} \text{ is } R_{\mathfrak{p}} \text{-free } \forall \text{ primes } \mathfrak{p} \neq \mathfrak{m} \}.$

If M is a nonfree indecomposable in $L_p(R)$, there exists an (unique up to isomorphism) Auslander-Reiten (AR) sequence beginning at M, a short exact sequence $0 \longrightarrow M \xrightarrow{p} E \xrightarrow{q} \operatorname{syz}_{B}^{-1} M \longrightarrow 0$ in $L_p(R)$ such that any $M \longrightarrow L \in CM(R)$ which is not a split mono factors through *p*.

Theorem

Let M be a nonfree indecomposable in $L_p(R)$. $\operatorname{Ext}_{R}^{1}(\operatorname{syz}_{R}^{-1}M, M) \cong \operatorname{End}_{R}(M) = \operatorname{End}_{R}(M) / \{\operatorname{maps factor}\}$ ing through projectives}, and the class [h] of an endomorphism $h: M \longrightarrow M$ corresponds to an AR sequence if and only if [h]generates the socle of the local ring $\underline{\operatorname{End}}_R(M)$.

Since M has no free direct summand, there exists no surjection $M \longrightarrow R$, so $M^* = \operatorname{Hom}_R(M, \mathfrak{m})$. Therefore $M \cong \operatorname{Hom}_R(M, \mathfrak{m})^*$ is a module over the ring $\operatorname{End}_R \mathfrak{m}$. Notation: If $w \in \operatorname{End}_R \mathfrak{m}$, let $w_M \in \operatorname{End}_R M$ denote corresponding endomorphism of M. For $h \in \operatorname{End}_R M$, let [h] denote the class of h in $\operatorname{End}_R M$.

Theorem 1: Assume that there exists a minimal prime \mathfrak{p} of R such that $\operatorname{rank}(M \otimes_R R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}})$ is a unit in R. Then there exists $\gamma \in \operatorname{End}_R \mathfrak{m}$ such that $[\gamma_M]$ generates $\operatorname{soc}(\operatorname{End}_R M)$. Such γ is independent of M if M has rank.

In the case where R is reduced and M has rank, γ can be taken to be any element of $\operatorname{Hom}_R(\operatorname{rad} \overline{R}, R) \setminus R$ where \overline{R} denotes the integral closure of R in Q = R[nonzerodivisors]⁻¹. We call such γ a **Frobenius element** (for *R*).

Then

Example 1 (numerical semigroup ring) Let R = $k[|t^{i_1}, \ldots, t^{i_n}|] \subset k[|t|], \gcd(i_1, \ldots, i_n) = 1.$ Let $v(R) = \mathbb{N}i_1 + \ldots \mathbb{N}i_n$. The *Frobenius number* F = F(v(R)) is $\max\{j \in \mathbb{Z} | j \notin v(R)\}$, and t^F is a Frobenius element for R.

Example 2 Let R = k[|x, y|]/(f), where f is an irreducible power series lying in $(x, y)^2$, and $k = \overline{k}$. Assume $f = x^m + y^n + y^n$ mixed terms. Then,

Proposition 1: Assume gcd(m, n) = 1. Then x^{m-1}/y and y^{n-1}/x are Frobenius elements for R.

(There are counterexamples when $gcd(m, n) \neq 1$.)

2 Computing Quiver Components

The stable Auslander-Reiten (AR) quiver of R is the directed graph such that: (1) The vertices are the indecomposable nonfree MCM *R*-modules N such that $N_{\mathfrak{p}}$ is $R_{\mathfrak{p}}$ -free for all nonmaximal primes \mathfrak{p} , and (2) There is an arrow (i.e. directed edge) $X \to Y$ if and only if there exists an irreducible map $X \longrightarrow Y$.

In some sense this quiver comes from AR sequences, since the irreducible maps can be found from the AR sequences. Let C be a connected component of the stable AR quiver. The Riedtmann Structure Theorem gives a particular tree T called the tree class of C. If C is periodic, i.e. contains an M such that $\operatorname{syz}^n M \cong M$ for some nonzero integer n, then T must be an infinite Dynkin diagram. From this one obtains a criterion for showing that $T = A_{\infty}$, which involves the computation of just two AR sequences, and is thus a manageable application of Theorem 1. In this case C is a tube. Below is the picture-definition of a tube "of rank 2"; note that the top and bottom rows should be identified. In our case, $\tau = syz$.

 $\begin{array}{c} x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow x_4 \longrightarrow \cdots \\ \tau x_1 \longrightarrow \tau x_2 \longrightarrow \tau x_3 \longrightarrow \tau x_4 \longrightarrow \cdots \\ x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow x_4 \longrightarrow \cdots \end{array}$

3 Adaptation of results of Green, Kerner and Zacharia

Now assume in addition that R is a complete intersection. The following propositions are adapted from results of Green, Kerner and

Robert Roy rmroy@syr.edu

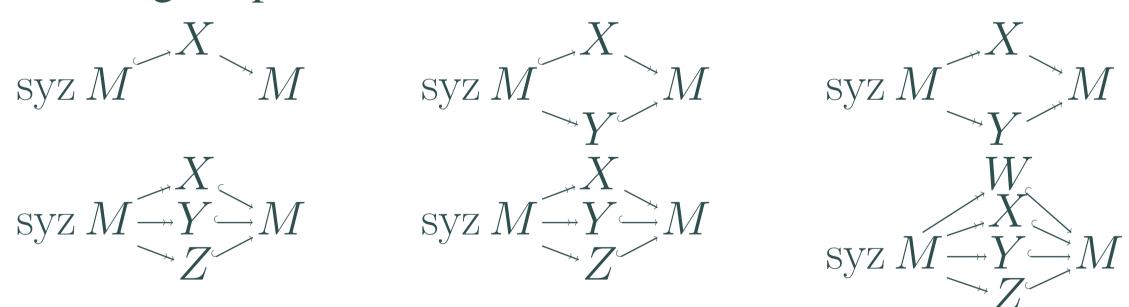
(The vertices x in a tube of rank 2) satisfy $\tau^2 x = x$.)

Zacharia in the context of selfinjective Artin algebras. **Proposition 2:** If $0 \longrightarrow M \longrightarrow X \longrightarrow 0$ is an AR sequence, the number of direct summands of X is bounded by 4. **Definition** Given $M, N \in L_p(R)$, an irreducible map $f: M \longrightarrow N$ is syz-perfect if M and N have no free summands and $syz^n f$, for $n \geq 0$, are either all monomorphisms or all epimorphisms. If M is a nonfree indecomposable in $L_p(R)$, then M is syz-perfect if every irreducible map $X \longrightarrow M$ and every irreducible map syz $M \longrightarrow Y$ are syz-perfect. M is called *eventually* syz-perfect if $syz^n M$ is syzperfect, for some $n \ge 0$.

C be the component of the stable AR quiver containing M. **Proposition 3:** If M is not eventually cosyz-perfect, or not evenperiodic ideal.

Proposition 4: Assume every module in C is eventually cosyzperfect, and $k = \overline{k}$. Then $C \cong \mathbb{Z}\Delta$, where Δ is either a Euclidean diagram of type A_n , D_n , E_i (i = 6, 7, 8) or a Dynkin diagram of type $E_i \ (i = 6, 7, 8), A_{\infty}, A_{\infty}^{\infty} \text{ or } D_{\infty}.$

Proposition 5: If every module in C is eventually syz-perfect, and M is syz-perfect, then the AR sequence ending in M has one of the following shapes:



Proposition 5 applies to special cases of the Huneke-Wiegand Conjecture: Let D be a Gorenstein local domain of dimension one and $M \in CM(D)$ nonfree. Then $\operatorname{Ext}_D^1(M, M) \neq 0$; equivalently, $\operatorname{Hom}_D(\operatorname{syz}_D M, M) \neq 0$.

Namely, the condition $\underline{\operatorname{Hom}}_{R}(\operatorname{syz}_{R}M, M) \neq 0$ is easily verified in all but the first two cases in Proposition 5, using the fact that if $f \in \operatorname{Hom}_R(\operatorname{syz}_R M, M)$ factors through a projective then its image lies in $\mathfrak{m}M$.

We also have the dual notions of (eventually) cosyz-perfect. Let $M \in L_p(R)$ be a nonfree, nonperiodic indecomposable, and let

tually syz-perfect, then C admits an additive function, and R has a

References

[1] Susumu Ariki, Ryoichi Kase, and Kengo Miyamoto. On components of stable Auslander-Reiten quivers that contain Heller lattices: the case of truncated polynomial rings. *Nagoya Mathematical Journal*, pages 1–42, 2016.
[2] Edward L. Green and Dan Zacharia. On modules of finite complexity over selfinjective artin algebras. *Algebras and Representation Theory*, 14(5):857–868, Oct 2011.
[3] Otto Kerner and Dan Zacharia. Auslander-Reiten theory for modules of finite complexity over self-injective algebras. *Bulletin of the London Mathematical Society*, 43(1):44–56, 2011.
[4] Robert Roy. Auslander-Reiten sequences for Gorenstein rings of dimension one. https://arxiv.org/abs/1710.00907, 2017.