Elementary (super) groups

Julia Pevtsova
University of Washington, Seattle

Auslander Days 2018
Woods Hole
Detection Questions

Let G be some algebraic object so that

$$\text{Rep } G, \quad H^*(G)$$

make sense.

Question (1)

How to detect that an element $\xi \in H^*(G)$ is nilpotent?

Question (2)

Let $M \in \text{Rep } G$. How to detect projectivity of M?

Question (3)

$\mathcal{T}(G)$ - tt - category associated to G (stmod G, $D^b(G)$, $K(\text{Inj}G)$...)

$$\text{supp } M = \emptyset \iff M \cong 0 \text{ in } \mathcal{T}(G)$$
• G - finite group, finite group scheme $H^*(G, k)$.
• G - algebraic group, $H^*(G, A)$
• G - compact Lie group (p-local compact group)
• G - Hopf algebra
 • small quantum group (char 0)
 • restricted enveloping algebra of a p-Lie algebra
 • Lie superalgebra
 • Nichols algebra
• G - finite supergroup scheme

“Other” contexts:
• **Stable Homotopy Theory**: Devinatz - Hopkins - Smith (’88)
• **Commutative Algebra**: $\mathbb{D}^{\text{perf}}(R – \text{mod})$, $\mathbb{D}(R – \text{mod})$, Hopkins (’87), Neeman (’92)
• **Algebraic Geometry**: $\mathbb{D}^{\text{perf}}(\text{coh}(X))$, Thomason (’97)
Historical framework: finite groups

Nilpotence in cohomology: D. Quillen, B. Venkov, *Cohomology of finite groups and elementary abelian subgroups*, 1972

Projectivity on elementary abelian subgroups: L. Chouinard, *Projectivity and relative projectivity over group rings*, 1976

Projectivity on shifted cyclic subgroup; finite dimensional modules: E. C. Dade. *Endo-permutation modules over p-groups*, 1978

A G-finite group. $k = \overline{\mathbb{F}}_p$.

$\text{Rep } G$ - abelian category with enough projectives ($\text{proj} = \text{inj}$).

- $H^i(G, k) = \text{Ext}^i_G(k, k)$, an abelian group for every i.
- $H^*(G, k) = \text{Ext}^*_G(k, k) = \bigoplus \text{Ext}^i_G(k, k)$ - graded commutative algebra;
 $H^*(G, M) = \text{Ext}^*_G(k, M)$ - module over $H^*(G, k)$ via Yoneda product.

Theorem (Golod ('59), Venkov ('61), Evens('61))

Let G be a finite group. Then $H^*(G, k)$ is a finitely generated k-algebra.
If M is a finite dimensional G-module, then $H^*(G, M)$ is a finite module over $H^*(G, k)$.
$E = (\mathbb{Z}/p)^n$ - an elementary abelian p-group of rank n.

$$H^*(E, k) = k[Y_1, \ldots, Y_n] \otimes \Lambda^*(s_1, \ldots, s_n), \quad p > 2$$

$E \triangleleft G \leadsto \text{res}_{G, E} : H^*(G, k) \to H^*(E, k)$

Theorem (Quillen '71, Quillen-Venkov '72)

A cohomology class $\xi \in H^*(G, k)$ is nilpotent if and only if for every elementary abelian p-subgroup $E \triangleleft G$,

$$\text{res}_{G, E}(\xi) \in H^*(E, k)$$

is nilpotent.

We say that nilpotence in cohomology is *detected* on elementary abelian p-subgroups.
QUILLEN STRATIFICATION

\[H^*(E, k) = k[Y_1, \ldots, Y_n] \otimes \Lambda^*(s_1, \ldots, s_n). \]

\[|E| = \text{Spec } H^*(E, k) = \text{Spec } k[Y_1, \ldots, Y_n] \cong \mathbb{A}^n \]

Theorem (Quillen, '71)

\[|G| = \text{Spec } H^*(G, k) \text{ is stratified by } |E|, \text{ where } E < G \text{ runs over all elementary abelian } p\text{-subgroups of } G. \]

“Weak form” of Quillen stratification:

\[|G| = \bigcup_{E < G} \text{res}_{G,E} |E| \]

QUILLEN STRATIFICATION IN GRAPHICS

\[\text{Spec } H^*(G, \overline{F}_2) \]

for \(G = A_{14} \)

Courtesy of Jared Warner
Spec $H^*(G, \overline{F}_5)$
for $G = GL_4(\mathbb{F}_5)$
Spec $H^*(G, \overline{\mathbb{F}_2})$
for $G = GL_5(\mathbb{F}_2)$
Spec $H^*(G, \overline{F}_2)$ for $G = S_{12}$
Theorem (Chouinard ’76)

Let G be a finite group, and M be a G-module. Then M is projective if and only for any elementary abelian p-subgroup E of G, $M_{\downarrow E}$ is projective.

“Projectivity is detected on elementary abelian p-subgroups”.
What about elementary abelian p-subgroups?
What about elementary abelian p-subgroups?
Let $E = (\mathbb{Z}/p)^n$, $(\sigma_1, \sigma_2, \ldots, \sigma_n)$ be generators of E. Then

$$kE \cong \frac{k[\sigma_1, \sigma_2, \ldots, \sigma_n]}{(\sigma_i^p - 1)} \cong \frac{k[x_1, \ldots, x_n]}{(x_1^p, \ldots, x_n^p)}.$$

where $x_i = \sigma_i - 1$.

$$\lambda = (\lambda_1, \ldots, \lambda_n) \in k^n \implies X_\lambda = \lambda_1 x_1 + \cdots + \lambda_n x_n \in kE.$$

Freshman calculus rule: $X_\lambda^p = 0$, $(X_\lambda + 1)^p = 1$.
Hence, $\langle X_\lambda + 1 \rangle \cong \mathbb{Z}/p$ is a shifted cyclic subgroup of kE.

Theorem (Dade’78)

Let E be an elementary abelian p-group, and M be a finite dimensional E-module. Then M is projective if and only if for any $\lambda \in k^n \setminus \{0\}$,
$M \downarrow_{\langle X_\lambda + 1 \rangle}$ is projetive (free).
APPLICATIONS

- Support varieties for G-modules (Alperin-Evans, Carlson, Avrunin-Scott, ...)

- Classification of thick tensor ideals in $\text{stmod } G$; localizing tensor ideals in $\text{Stmod } G$ (Benson-Carlson-Rickard’97; Benson-Iyengar-Krause’11)

- Computation of Balmer spectrum of $\text{stmod } G$.

Finite group schemes

An affine group scheme over k is a representable functor

$$G : \text{comm } k - \text{alg} \rightarrow \text{groups}$$

R - commutative k-algebra. $\leadsto G(R) = \text{Hom}_{k-\text{alg}}(k[G], R)$.

$k[G]$ is a commutative Hopf algebra.

An affine group scheme is finite if $\dim_k k[G] < \infty$.

$$\left\{ \begin{array}{c} \text{finite group schemes} \\ G \end{array} \right\} \sim \left\{ \begin{array}{c} \text{finite dimensional} \\ \text{commutative} \\ \text{Hopf algebras} \\ k[G] \end{array} \right\}$$
G - a finite group scheme.

$kG := k[G]^\vee = \text{Hom}_k(k[G], k)$, the group algebra of G, a finite-dimensional cocommutative Hopf algebra

\[\begin{cases}
\text{finite group schemes } G \\
\end{cases} \sim \begin{cases}
\text{finite dimensional cocommutative Hopf algebras } kG \\
\end{cases} \]

\[\text{Rep}_k G \sim k[G]\text{-comodules} \sim kG\text{-modules} \]
G - a finite group scheme.

$kG := k[G]^\vee = \text{Hom}_k(k[G], k)$, the group algebra of G, a finite-dimensional cocommutative Hopf algebra

\[
\begin{align*}
\left\{ \text{finite group schemes } G \right\} & \sim \left\{ \text{finite dimensional cocommutative Hopf algebras } kG \right\} \\
\text{Rep}_k G & \sim kG\text{-modules}
\end{align*}
\]

Abuse of language: G-modules

$\text{Rep } G = \text{Mod } G$ - abelian category with enough projectives (proj= inj)

$H^*(G, k) = H^*(kG, k)$ - graded commutative algebra.
EXAMPLES

- **Finite groups.** kG is a finite dimensional cocommutative Hopf algebra, generated by group like elements.

- **Restricted Lie algebras.**
 Let \mathcal{G} be an algebraic group ($GL_n, SL_n, Sp_{2n}, SO_n$).
 Then $\frak{g} = \text{Lie } \mathcal{G}$ is a *restricted Lie algebra*. It has the p-restriction map (or p^th-power map)

 $$[p] : \frak{g} \to \frak{g}$$

 a semi-linear map satisfying some natural axioms.
 For example, for $\frak{g} = gl_n$, $A^{[p]} = A^p$

 $$u(\frak{g}) = U(\frak{g})/\langle x^p - x^{[p]}, x \in \frak{g} \rangle$$

 restricted enveloping algebra (f.d. cocommutative Hopf algebra).
Examples

- **Finite groups.** kG is a finite dimensional cocommutative Hopf algebra, generated by group like elements.

- **Restricted Lie algebras.**
 Let G be an algebraic group (GL_n, SL_n, Sp_{2n}, SO_n).
 Then $g = \text{Lie } G$ is a **restricted Lie algebra**. It has the p-restriction map (or p^{th}-power map)

 $$[p] : g \to g$$

 a semi-linear map satisfying some natural axioms.
 For example, for $g = gl_n$, $A^{[p]} = A^p$

 $$u(g) = U(g)/\langle x^p - x^{[p]} \rangle, x \in g$$

 restricted enveloping algebra (f.d. cocommutative Hopf algebra).
Examples

- **Finite groups.** kG is a finite dimensional cocommutative Hopf algebra, generated by group like elements.

- **Restricted Lie algebras.**
 Let G be an algebraic group (GL_n, SL_n, Sp_{2n}, SO_n).
 Then $\mathfrak{g} = \text{Lie } G$ is a restricted Lie algebra. It has the p-restriction map (or p^{th}-power map)

 \[[p] : \mathfrak{g} \to \mathfrak{g} \]

 a semi-linear map satisfying some natural axioms.
 For example, for $\mathfrak{g} = \mathfrak{gl}_n$, $A^{[p]} = A^p$

 \[u(\mathfrak{g}) = U(\mathfrak{g})/\langle x^p - x^{[p]}, x \in \mathfrak{g} \rangle \]

 restricted enveloping algebra (f.d. cocommutative Hopf algebra).
Examples

- **Finite groups.** kG is a finite dimensional cocommutative Hopf algebra, generated by group like elements.

- **Restricted Lie algebras.**
 Let \mathcal{G} be an algebraic group (GL_n, SL_n, Sp_{2n}, SO_n).
 Then $\mathfrak{g} = \text{Lie } \mathcal{G}$ is a *restricted Lie algebra*. It has the p-restriction map (or p^{th}-power map)

 \[[p] : \mathfrak{g} \rightarrow \mathfrak{g} \]

 a semi-linear map satisfying some natural axioms.
 For example, for $\mathfrak{g} = \mathfrak{gl}_n$, $A^{[p]} = A^p$

 \[u(\mathfrak{g}) = U(\mathfrak{g})/\langle x^p - x^{[p]}, x \in \mathfrak{g} \rangle \]

 restricted enveloping algebra (f.d. cocommutative Hopf algebra).

 \[
 \text{Representations of } \mathfrak{g} \sim u(\mathfrak{g})\text{-modules}
 \]
• **Frobenius kernels.** $F : \mathcal{G} \to \mathcal{G}$ - Frobenius map;

\[
\mathcal{G}_r = \ker \{F^r : \mathcal{G} \to \mathcal{G}\}
\]

(connected) finite group scheme.

• **Frobenius kernels of the Additive group \mathbb{G}_a.**

$\mathbb{G}_a(R) := R^+$. \\
$k[\mathbb{G}_a] = k[T], \Delta(T) = T \otimes 1 + 1 \otimes T$.

\[
F : \mathbb{G}_a \xrightarrow{a \mapsto a^p} \mathbb{G}_a
\]

$\mathbb{G}_{a(1)}(R) = \ker F(R) = \{a \in R \mid a^p = 0\}$

$\mathbb{G}_{a(r)}(R) = \ker F^r(R) = \{a \in R \mid a^{p^r} = 0\}$

\[
k[\mathbb{G}_{a(r)}] \cong k[T]/T^{p^r}; \quad \Delta(T) = T \otimes 1 + 1 \otimes T
\]

$\kappa \mathbb{G}_{a(r)} \cong k[s_1, \ldots, s_n]/(s_1^p, \ldots, s_n^p)$

Coproduct in $k\mathbb{G}_{a(r)}$ is given by "Witt polynomials".
FINITE GENERATION OF COHOMOLOGY

Theorem (Friedlander-Suslin, ’97)

Let $A = kG$ be a finite dimensional cocommutative Hopf algebra over a field k. Then $H^*(A, k)$ is a finitely generated k-algebra.

If M is a finite dimensional A-module, then $H^*(A, M)$ is a finite module over $H^*(A, k)$.

Nilpotence and projectivity, infinite dimensional modules, *unipotent finite groups schemes*. C. Bendel, *Cohomology and projectivity of modules for finite group schemes*, 2001

Nilpotence, *all finite groups schemes*. A. Suslin, *Detection theorem for finite groups schemes*, 2006

D. Benson, S. Iyengar, H. Krause, J. Pevtsova, *Stratification of module categories for finite groups schemes*, 2018
Definition

An elementary group scheme is a finite group scheme isomorphic to $\mathbb{G}_a(r) \times (\mathbb{Z}/p)^\times n$.

The group algebra is commutative and cocommutative; as an algebra it looks like kE for E an elementary abelian p-group. As a coalgebra it is (way) more complicated but still very explicit.

Definition

A π-point α of a finite group scheme G defined over field extension K/k is a flat map of algebras

$$K[t]/t^p \xrightarrow{\alpha} KG$$

which factors through some elementary subgroup scheme $\mathcal{E} \subset G_K$.
Theorem (Suslin’06)

Let G be a finite groups scheme. A class $\zeta \in H^* (G, k)$ is nilpotent if and only if

$$\text{res}_{G_K, E} (\zeta_K) \in H^* (E, K)$$

is nilpotent for any field extension K/k and any elementary subgroup scheme $E < G_K$.

Theorem (Benson-Iyengar-Krause-P’18)

Let G be a finite group scheme, and M be a G-module. Then M is projective if and only if for every field extension K/k and any π-point $\alpha : K[t]/t^\pi \to KG$, the $K[t]/t^\pi$-module $\alpha^* (M_K)$ is projective (free).

Generalization of Dade + Chouinard in two directions: to all finite group schemes (\sim finite dimensional cocommutative Hopf algebras), and to infinite dimensional modules.

Finite generation + detection “\Rightarrow” Theory of supports in Stmod G
FINITE SUPERGROUP SCHEMES

char $k = p > 2$, $\bar{k} = k$ (perfect is enough)
$\mathbb{Z}/2$-graded vector spaces, $\mathbb{Z}/2$-graded Hopf algebras
$A = A_{ev} \oplus A_{odd}$

Graded commutative: $a \cdot b = (-1)^{|a||b|} b \cdot a$

Graded cocommutative: $T \circ \Delta = \Delta$, where Δ is the coproduct,
$T : V \otimes W \to W \otimes V$;
$T(v \otimes w) = (-1)^{|v||w|} w \otimes v$.

\[
\begin{cases}
\text{finite supergroup schemes } G \\
\end{cases}
\sim
\begin{cases}
\text{finite dimensional } \\
\mathbb{Z}/2\text{-graded cocommutative} \\
\text{Hopf algebras } A = kG \\
\end{cases}
\]
Examples

- Finite group schemes (∼ finite dimensional cocommutative Hopf algebras): $G = G_{ev}$.
- Restricted Lie superalgebras \mapsto restricted enveloping algebras \mapsto f.d. graded cocommutative Hopf algebras.

Definition

G^-_a is a finite supergroup scheme with coordinate algebra

$$\Lambda^*(v) \simeq k[v]/v^2, \ |v| = 1, \ \Delta(v) = v \otimes 1 + 1 \otimes v$$

- G^-_a is self-dual with group algebra $kG^-_a = k[\sigma]/\sigma^2, \ |\sigma| = 1$.
- Exterior algebras $\Lambda^*(V)$, corresponding to $G^-_a \times \ldots \times G^-_a$
- Finite dimensional sub Hopf algebras of the $\text{mod } p$ Steenrod algebra (\mathbb{Z}-graded).
Cohomology

\[
\text{Rep } G = \text{Mod } kG - \text{ super } k\text{-vector spaces with linear } kG\text{-action.}
\]

Cohomology \(H^{*,*}(G, k) = H^{*,*}(kG, k) \)
Cohomology

\[\text{Rep } G = \text{Mod } kG \text{ -- super } k\text{-vector spaces with linear } kG\text{-action.} \]

Cohomology \(H^{*,*}(G, k) = H^{*,*}(kG, k) \) - cohomological degree
Cohomology

\[\text{Rep } G = \text{Mod } kG – \text{super } k\text{-vector spaces with linear } kG\text{-action.} \]

Cohomology \(H^{*,*}(G, k) = H^{*,*}(kG, k) \) - internal degree
Cohomology

Rep $G = \text{Mod} \ kG$ – super k-vector spaces with linear kG-action.

Cohomology $H^{\ast,\ast}(G, k) = H^{\ast,\ast}(kG, k)$

Theorem (Drupieski’16)

Let G be a finite supergroup scheme. Then $H^{\ast,\ast}(G, k)$ is a finitely generated k-algebra.

For detection, we need “elementary supergroups”.
Witt Vectors

\[W : \text{comm } k - \text{algebras} \rightarrow \text{groups} \]

affine group scheme of **additive Witt vectors**.

\[W(R) = \{(a_0, a_1, \ldots) | a_i \in R\} \]

\[(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (S_0(a_0, b_0), S_1(a_0, a_1, b_0, b_1), \ldots), \]

\(S_i \)-structure polynomials for the additive Witt vectors.

For example, \(S_0 = a_0 + b_0, S_1 = a_1 + b_1 + \frac{(a_0+b_0)^p-a_0^p-b_0^p}{p} \).

\(W_m \) - the group scheme of Witt vectors of length **\(m \)**

\(W_{m,n} := W_m(n) \) - the **\(n \)**th Frobenius kernel of **\(W_m \)**

- a finite connected commutative unipotent group scheme.

Examples:

- **\(W_1 \cong \mathbb{G}_a \), **\(W_{1,n} \cong \mathbb{G}_a(n) \)
- **\(W_{m,1} \cong \mathbb{G}_a^\vee(m) \)** (Cartier dual)
$W_{2,2}(R) = \{(a_0, a_1) | a_0, a_1 \in R\}; \quad kW_{2,2} \cong k[s_0, s_1]/(s_0^{p^2}, s_1^{p^2})$

\[
\Delta(s_0) = S_0(s_0 \otimes 1, 1 \otimes s_0) = s_0 \otimes 1 + 1 \otimes s_0
\]

\[
\Delta(s_1) = S_1(s_0 \otimes 1, s_1 \otimes 1, 1 \otimes s_0, 1 \otimes s_1) = s_1 \otimes 1 + 1 \otimes s_1 + \frac{(s_0 \otimes 1 + 1 \otimes s_0)^p - (s_0 \otimes 1)^p - (1 \otimes s_0)^p}{p}
\]

The simple quotients are $\mathbb{G}_{a(1)}$.
$W_{m,n}$
$E_{m,n}$
$E_{m,n}$

$E_{m,n}^-$

G_a^-

$E_{m,n}$
WITT ELEMENTARY SUPERGROUP SCHEMES

(Super) technical part: Witt elementary supergroup schemes

\[\mathbb{E}_{m,n}^- = \frac{k[s_1, \ldots, s_{n-1}, s_n, \sigma]}{(s_1^p, \ldots, s_{n-1}^p, s_n^m, \sigma^2 - s_n^p)} \]

\(s_1, \ldots, s_n\) are even; \(\sigma\) is odd.

\[
\Delta(s_i) = S_{i-1}(s_1 \otimes 1, \ldots, s_i \otimes 1, 1 \otimes s_1, \ldots, 1 \otimes s_i) \quad (i \geq 1)
\]

\[
\Delta(\sigma) = \sigma \otimes 1 + 1 \otimes \sigma
\]

where the \(S_i\) are the structure polynomials for the Witt vectors.
Definition

A finite supergroup scheme is elementary if it’s isomorphic to a quotient of $\mathbb{E}_{m,n}^- \times (\mathbb{Z}/p)^s$.

Remark: These quotients can be explicitly classified using the theory of Diedonné modules.

Theorem (Classification)

An elementary supergroup scheme is isomorphic to one of the following:

(i) $G_{a(n)} \times (\mathbb{Z}/p)^s$,
(ii) $G_{a(n)} \times G_{a}^- \times (\mathbb{Z}/p)^s$,
(iii) $E_{m,n}^- \times (\mathbb{Z}/p)^s$,
(iv) $E_{m,n,\mu}^- \times (\mathbb{Z}/p)^s$.

\[k\mathbb{E}_{m,n,\mu} = \frac{k[s_1, \ldots, s_{n-1}, s_n, \sigma]}{(s_1^p, \ldots, s_{n-1}^p, s_n^{p+1}, \sigma^2 - s_n^p)} \]

\[\Delta(s_i) = S_i(\mu s_n^p \otimes 1, s_1 \otimes 1, \ldots, s_i \otimes 1, 1 \otimes \mu s_n^p, 1 \otimes s_1, \ldots, 1 \otimes s_i) \]

\[\Delta(\sigma) = \sigma \otimes 1 + 1 \otimes \sigma \]
\[k \mathbb{E}_{m,n,\mu}^- = \frac{k[s_1, \ldots, s_{n-1}, s_n, \sigma]}{(s_1^p, \ldots, s_{n-1}^p, s_n^{p+1}, \sigma^2 - s_n)} \]

\[\Delta(s_i) = S_i(\mu s_n^m \otimes 1, s_1 \otimes 1, \ldots, s_i \otimes 1, 1 \otimes \mu s_n^m, 1 \otimes s_1, \ldots, 1 \otimes s_i) \]

\[\Delta(\sigma) = \sigma \otimes 1 + 1 \otimes \sigma \]
Detection Theorem

Theorem (Benson-Iyengar-Krause-P’18)

Suppose that G is a finite unipotent supergroup scheme. Then

(i) Nilpotence of elements of $H^*,*(-G,k)$ and

(ii) Projectivity of G-modules

are detected upon restriction to sub supergroup schemes isomorphic to a quotient of some $\mathbb{E}_{m,n}^- \times (\mathbb{Z}/p)^s$ (after field extension).
<table>
<thead>
<tr>
<th>Intro</th>
<th>Finite groups</th>
<th>Finite group schemes</th>
<th>Supergroup schemes</th>
<th>Witt elementaries</th>
</tr>
</thead>
</table>

THANK YOU