Gorenstein Projective Modules for the Working Algebraist

Xiuhua Luo

Nantong University, China

xiuhualuo@ntu.edu.cn

Maurice Auslander Distinguished Lectures and International Conference

April 26, 2018
Overview

1 Background
- Definition and Properties
- Applications

2 The explicit construction of Gorenstein projective modules
- Upper Triangular Matrix Rings
- Path Algebras of Acyclic Quivers
- Tensor Products of algebras
Let R be a ring. A module M is **Gorenstein projective**, if there exists a complete projective resolution

$$P^\bullet = \cdots \to P^{-1} \to P^0 \xrightarrow{d^0} P^1 \to \cdots$$

such that $M \cong \text{Ker } d^0$.

Let $GP(R)$ be the category of Gorenstein projective modules.
Gorenstein projective modules (Enochs and Jenda 1995)

Let R be a ring. A module M is **Gorenstein projective**, if there exists a complete projective resolution

$$P^\bullet = \cdots \rightarrow P^{-1} \rightarrow P^0 \xrightarrow{d^0} P^1 \rightarrow \cdots$$

such that $M \cong \operatorname{Ker} d^0$.

Let $\mathcal{GP}(R)$ be the category of Gorenstein projective modules.
In 1967, M. Auslander introduced G-dimension zero modules over a Noetherian commutative local ring.
In 1967, M. Auslander introduced G-dimension zero modules over a Noetherian commutative local ring.

In 1969, M. Auslander and M. Bridger generalized these modules to two-sided Noetherian ring.
In 1967, M. Auslander introduced G-dimension zero modules over a Noetherian commutative local ring.

In 1969, M. Auslander and M. Bridger generalized these modules to two-sided Noetherian ring.

Avramov, Buchweitz, Martsinkovsky and Reiten proved that a finitely generated module M over Noetherian ring R is Gorenstein projective if and only if $\text{G-dim}_R M = 0$.
Theorem (Henrik Holm 2004)

Let R be a non-trivial associative ring. Then $\mathcal{GP}(R)$ is projectively resolving. That is to say, $\mathcal{GP}(R)$ contains the projective modules and is closed under extensions, direct summands, kernels of surjections.

Theorem (Apostolos Beligiannis 2005)

Let R be an Artin Gorenstein ring, then $\mathcal{GP}(R)$ is a Frobenius category whose projective-injective objects are exactly all the projective R-modules.
Properties

Theorem (Henrik Holm 2004)

Let R be a non-trivial associative ring. Then $\mathcal{GP}(R)$ is projectively resolving. That is to say, $\mathcal{GP}(R)$ contains the projective modules and is closed under extensions, direct summands, kernels of surjections.

Theorem

If R is a Gorenstein ring, then $\mathcal{GP}(R)$ is contravariantly finite [Enochs and Jenda 1995], thus it is functorially finite, and hence $\mathcal{GP}(R)$ has AR-seqs [Auslander and Smalø 1980].
Properties

Theorem (Henrik Holm 2004)

Let R be a non-trivial associative ring. Then $\mathcal{GP}(R)$ is projectively resolving. That is to say, $\mathcal{GP}(R)$ contains the projective modules and is closed under extensions, direct summands, kernels of surjections.

Theorem

If R is a Gorenstein ring, then $\mathcal{GP}(R)$ is contravariantly finite [Enochs and Jenda 1995], thus it is functorially finite, and hence $\mathcal{GP}(R)$ has AR-seqs [Auslander and Smal'φ 1980].

Theorem (Apostolos Beligiannis 2005)

Let R be an Artin Gorenstein ring, then $\mathcal{GP}(R)$ is a Frobenius category whose projective-injective objects are exactly all the projective R-modules.
Theorem (Henrik Holm 2004)

Let R be a non-trivial associative ring. Then $\mathcal{GP}(R)$ is projectively resolving. That is to say, $\mathcal{GP}(R)$ contains the projective modules and is closed under extensions, direct summands, kernels of surjections.

Theorem

If R is a Gorenstein ring, then $\mathcal{GP}(R)$ is contravariantly finite [Enochs and Jenda 1995], thus it is functorially finite, and hence $\mathcal{GP}(R)$ has AR-seqs [Auslander and Smalø 1980].

Theorem (Apostolos Beligiannis 2005)

Let R be an Artin Gorenstein ring, then $\mathcal{GP}(R)$ is a Frobenius category whose projective-injective objects are exactly all the projective R-modules.
Applications

- Singularity theory: \(\mathcal{GP}(R) \cong D_{sg}(R) \) as triangular categories,
 Buchweitz: when \(R \) is Gorenstein Noetherian ring;
 Happel: when \(R \) is Gorenstein algebra.
 Ringel and Pu Zhang: \(\mathcal{GP}(kQ \otimes_k k[x]/(X^2)) \cong D^b(kQ)/[1] \).
Applications

- Singularity theory: $\mathcal{GP}(R) \cong D_{sg}(R)$ as triangular categories, Buchweitz: when R is Gorenstein Noetherian ring; Happel: when R is Gorenstein algebra.
 - Ringel and Pu Zhang: $\mathcal{GP}(kQ \otimes_k k[x]/(X^2)) \cong D^b(kQ)/[1]$.

- Tate cohomology theory: $\hat{\text{Ext}}_R^n(M, N) = H^n\text{Hom}_R(T, N)$ where T is a complete projective resolution in a complete resolution $T \xrightarrow{\nu} P \xrightarrow{\pi} M$ with ν_n bijection when $n \gg 0$. [Avramov and Martsinkovsky]

- Xiuhua Luo (NTU)
Applications

- Singularity theory: $\mathcal{GP}(R) \cong D_{sg}(R)$ as triangular categories,
 Buchweitz: when R is Gorenstein Noetherian ring;
 Happel: when R is Gorenstein algebra.
 Ringel and Pu Zhang: $\mathcal{GP}(kQ \otimes_k k[x]/(X^2)) \cong D^b(kQ)/[1]$.

- Tate cohomology theory: $\hat{\text{Ext}}^n_R(M, N) = H^n\text{Hom}_R(T, N)$ where T is a complete projective resolution in a complete resolution $T \xrightarrow{\psi} P \xrightarrow{\pi} M$ with ψ_n bijection when $n \gg 0$. [Avramov and Martsinkovsky]

- the invariant subspaces of nilpotent operators:
 Ringel and Schmidmeier: $\{(V, U, T) \mid T : V \to V, T^6 = 0, U \subset V, T(U) \subset U\} = \mathcal{GP}(k[T]/(T^6) \otimes_k k(\bullet \to \bullet))$;
 Kussin, Lenzing and Meltzer showed a surprising link between singularity theory and the invariant subspace problem of nilpotent operators.

...
Let A and B be rings, M an $A-B$–bimodule, and $T := \begin{pmatrix} A & AM_B \\ 0 & B \end{pmatrix}$. Assume that T is an Artin algebra and consider finitely generated T–modules. A T–module can be identified with a triple $\left(X \atop Y \right)_\phi$, where $X \in A\text{-mod}$, $Y \in B\text{-mod}$, and $\phi : M \otimes_B Y \to X$ is an A–map. $\mathcal{G}_p(T)$ is the category of finitely generated Gorenstein proj. T–modules.
The explicit construction of Gorenstein projective modules

Let A and B be rings, M an $A-B$-bimodule, and $T := \begin{pmatrix} A & A^M_B \\ 0 & B \end{pmatrix}$.

Assume that T is an Artin algebra and consider finitely generated T-modules. A T-module can be identified with a triple $(X \ Y)_{\phi}$, where $X \in A\text{-mod}$, $Y \in B\text{-mod}$, and $\phi : M \otimes_B Y \to X$ is an A-map.

$Gp(T)$ is the category of finitely generated Gorenstein proj. T-modules.

Theorem 2.1 (P. Zhang 2013)

Let A and B be algebras and M a $A-B$-bimodule with $\text{pdim}_A M < \infty$, $\text{pdim}M_B < \infty$, $T := \begin{pmatrix} A & A^M_B \\ 0 & B \end{pmatrix}$. Then $(X \ Y)_{\phi} \in Gp(T)$ if and only if $\phi : M \otimes_B Y \to X$ is an injective A-map, $\text{Coker} \phi \in Gp(A)$ and $Y \in Gp(B)$.
Let $Q = (Q_0, Q_1, s, e)$ be a finite acyclic quiver, k a field, A a f. d. k-algebra. Label the vertices as $1, 2, \cdots, n$ such that for each arrow α, $s(\alpha) > e(\alpha)$. Then $A \otimes_k kQ$ is equivalent to an upper triangular algebra.
Let $Q = (Q_0, Q_1, s, e)$ be a finite acyclic quiver, k a field, A a f. d. k-algebra. Label the vertices as $1, 2, \cdots, n$ such that for each arrow $\alpha, s(\alpha) > e(\alpha)$. Then $A \otimes_k kQ$ is equivalent to an upper triangular algebra.

Theorem 2.2 (joint with P. Zhang 2013)

Let Q be a finite acyclic quiver, and A a finite dimensional algebra over a field k. Let $X = (X_i, X_\alpha)$ be a representation of Q over A. Then X is Gorenstein projective if and only if X is separated monic, and $\forall i \in Q_0$, $X_i \in Gp(A)$, $X_i / (\sum_{\alpha \in Q_1, e(\alpha)=i} \text{Im} X_\alpha) \in Gp(A)$.

Definition 2.3 separated monic representation

A representation $X = (X_i, X_\alpha)$ of Q over A is separated monic, if for each $i \in Q_0$, the A-map $\bigoplus_{\alpha \in Q_1, e(\alpha)=i} e(\alpha) \rightarrow X_i$ is injective.
Let $Q = (Q_0, Q_1, s, e)$ be a finite acyclic quiver, k a field, A a f. d. k-algebra. Label the vertices as $1, 2, \cdots, n$ such that for each arrow $\alpha, s(\alpha) > e(\alpha)$. Then $A \otimes_k kQ$ is equivalent to an upper triangular algebra.

Theorem 2.2 (joint with P. Zhang 2013)

Let Q be a finite acyclic quiver, and A a finite dimensional algebra over a field k. Let $X = (X_i, X_\alpha)$ be a representation of Q over A. Then X is Gorenstein projective if and only if X is separated monic, and $\forall i \in Q_0, X_i \in \mathcal{G}p(A), X_i / (\sum_{\alpha \in Q_1, e(\alpha) = i} \text{Im} X_\alpha) \in \mathcal{G}p(A)$.

Definition 2.3 separated monic representation

A representation $X = (X_i, X_\alpha)$ of Q over A is **separated monic**, if for each $i \in Q_0$, the A-map $\bigoplus_{\alpha \in Q_1, e(\alpha) = i} X_{s(\alpha)} \xrightarrow{(X_\alpha)} X_i$ is injective.
In fact, let \(\Lambda = A \otimes_k kQ \), \(D = \text{Hom}_k(-, k) \), \(S_i \) is a simple left \(kQ \)-module,

\[
0 \to \bigoplus_{\alpha \in Q_1} e_{s(\alpha)} kQ \xrightarrow{(\alpha, \cdot)} e_i kQ \to D(S_i) \to 0, \text{ exact}
\]
In fact, let $\Lambda = A \otimes_k kQ$, $D = \text{Hom}_k(-, k)$, S_i is a simple left kQ-module,

$$0 \to \bigoplus_{\alpha \in Q_1} e_s(\alpha) kQ \overset{(\alpha)}{\to} e_i kQ \to D(S_i) \to 0, \text{ exact}$$

$$0 \to \bigoplus_{\alpha \in Q_1} A \otimes e_s(\alpha) kQ \overset{(1 \otimes \alpha)}{\to} A \otimes e_i kQ \to A \otimes D(S_i) \to 0, \text{ exact}$$
In fact, let $\Lambda = A \otimes_k kQ$, $D = \text{Hom}_k(-, k)$, S_i is a simple left kQ-module,

$$0 \to \bigoplus_{\alpha \in Q_1 \atop e(\alpha) = i} e_{s(\alpha)}kQ \xrightarrow{\alpha \cdot} e_i kQ \to D(S_i) \to 0, \text{ exact}$$

$$0 \to \bigoplus_{\alpha \in Q_1 \atop e(\alpha) = i} A \otimes e_{s(\alpha)}kQ \xrightarrow{(1 \otimes \alpha \cdot)} A \otimes e_i kQ \to A \otimes D(S_i) \to 0, \text{ exact}$$

$$0 \to \bigoplus_{\alpha \in Q_1 \atop e(\alpha) = i} (1 \otimes e_{s(\alpha)}) \Lambda \xrightarrow{(1 \otimes \alpha \cdot)} (1 \otimes e_i) \Lambda \to A \otimes D(S_i) \to 0, \text{ exact}$$
In fact, let $\Lambda = A \otimes_k kQ$, $D = \text{Hom}_k(-, k)$, S_i is a simple left kQ-module,

$$0 \rightarrow \bigoplus_{\alpha \in Q_1 \atop e(\alpha) = i} e_s(\alpha)kQ \xrightarrow{(\alpha.)} e_i kQ \rightarrow D(S_i) \rightarrow 0, \text{ exact}$$

$$0 \rightarrow \bigoplus_{\alpha \in Q_1 \atop e(\alpha) = i} A \otimes e_s(\alpha)kQ \xrightarrow{(1 \otimes \alpha.)} A \otimes e_i kQ \rightarrow A \otimes D(S_i) \rightarrow 0, \text{ exact}$$

$$0 \rightarrow \bigoplus_{\alpha \in Q_1 \atop e(\alpha) = i} (1 \otimes e_s(\alpha))\Lambda \xrightarrow{(1 \otimes \alpha.)} (1 \otimes e_i)\Lambda \rightarrow A \otimes D(S_i) \rightarrow 0, \text{ exact}$$

$$0 \rightarrow \bigoplus_{\alpha \in Q_1 \atop e(\alpha) = i} X_s(\alpha) \xrightarrow{(X_\alpha)} X_i \rightarrow (A \otimes D(S_i)) \otimes_\Lambda X \rightarrow 0 \ (\ast)$$
\((\ast)\) is exact if and only if \(\bigoplus_{\alpha \in Q_1} X_{s(\alpha)} \xrightarrow{(X_\alpha)} X_i\) is injective if and only if \(\text{Tor}^\Lambda_i (A \otimes_k D(S_i), X) = 0\) for all \(i \geq 1\) and all simple left \(kQ\)-modules \(S_i\).
\((\ast)\) is exact if and only if \(\bigoplus_{\alpha \in Q_1} X_{s(\alpha)} \xrightarrow{(X_\alpha)} X_i\) is injective if and only if

\[
\text{Tor}_{i}^\Lambda(A \otimes_k D(S_i), X) = 0 \quad \text{for all } i \geq 1 \text{ and all simple left } kQ\text{-modules } S_i.
\]

Definition 2.4 (Generalized) separated monic representation

Let \(k\) be a field, \(A\) and \(B\) finite dimensional \(k\)-algebras, \(\Lambda := A \otimes_k B\). A left \(\Lambda\)-module \(X\) is called a **(generalized) separated monic representation** of \(B\) over \(A\), if

\[
\text{Tor}_{i}^\Lambda(A \otimes_k D(S), X) = 0
\]

for all \(i \geq 1\) and all simple left \(B\)-modules \(S\).

\(\text{sm}{\text{on}}(B, A)\): the category of separated monic representation of \(B\) over \(A\).
Define

\[\text{sm} \text{on}(B, Gp(A)) := \{ X \in \text{sm} \text{on}(B, A) \mid (A \otimes_k V) \otimes \Lambda X \in Gp(A), \forall V_B \}. \]
Define

\[\text{sm}(B, \mathcal{G}p(A)) := \{ X \in \text{sm}(B, A) \mid (A \otimes_k V) \otimes \Lambda X \in \mathcal{G}p(A), \ \forall \ V_B \}. \]

Proposition 2.5

Let \(A \) and \(B \) be f. d. \(k \)-algebras. Then \(\text{sm}(B, \mathcal{G}p(A)) \subset \mathcal{G}p(\Lambda) \).
Define

\[\text{sm} \! \text{on}(B, \mathcal{G}p(A)) := \{ X \in \text{sm} \! \text{on}(B, A) \mid (A \otimes_k V) \otimes \Lambda X \in \mathcal{G}p(A), \ \forall \ V_B \} \].

Proposition 2.5

Let \(A \) and \(B \) be f. d. \(k \)-algebras. Then \(\text{sm} \! \text{on}(B, \mathcal{G}p(A)) \subset \mathcal{G}p(\Lambda) \).

Question: When does \(\mathcal{G}p(\Lambda) \) coincide with \(\text{sm} \! \text{on}(B, \mathcal{G}p(A)) \)?

Theorem 2.6 (joint with W. Hu, B. Xiong and G. Zhou 2018)

Suppose that \(B \) is Gorenstein. Then \(\text{sm} \! \text{on}(B, \mathcal{G}p(A)) = \mathcal{G}p(\Lambda) \) if and only if \(\text{gl} \! \text{.dim}(B) < \infty \).

Suppose that \(A \) is Gorenstein. Then \(\text{sm} \! \text{on}(B, \mathcal{G}p(A)) = \mathcal{G}p(\Lambda) \) if and only if \(B \) is CM-free.
Define

\[\text{smom}(B, \mathcal{G}p(A)) := \{ X \in \text{smom}(B, A) \mid (A \otimes_k V) \otimes \Lambda X \in \mathcal{G}p(A), \ \forall \ V_B \}. \]

Proposition 2.5

Let \(A \) and \(B \) be f. d. \(k \)-algebras. Then \(\text{smom}(B, \mathcal{G}p(A)) \subset \mathcal{G}p(\Lambda) \).

Question: When does \(\mathcal{G}p(\Lambda) \) coincide with \(\text{smom}(B, \mathcal{G}p(A)) \)?

Theorem 2.6 (joint with W. Hu, B. Xiong and G. Zhou 2018)

- Suppose that \(B \) is Gorenstein. Then \(\text{smom}(B, \mathcal{G}p(A)) = \mathcal{G}p(\Lambda) \) if and only if \(\text{gl.dim}(B) < \infty \).
Define

\[\text{smon}(B, \mathcal{G}p(A)) := \{ X \in \text{smon}(B, A) \mid (A \otimes_k V) \otimes \Lambda X \in \mathcal{G}p(A), \ \forall \ V_B \}. \]

Proposition 2.5

Let \(A \) and \(B \) be f. d. \(k \)-algebras. Then \(\text{smon}(B, \mathcal{G}p(A)) \subset \mathcal{G}p(\Lambda) \).

Question: When does \(\mathcal{G}p(\Lambda) \) coincide with \(\text{smon}(B, \mathcal{G}p(A)) \) ?

Theorem 2.6 (joint with W. Hu, B. Xiong and G. Zhou 2018)

- Suppose that \(B \) is Gorenstein. Then \(\text{smon}(B, \mathcal{G}p(A)) = \mathcal{G}p(\Lambda) \) if and only if \(\text{gl.dim}(B) < \infty \).
- Suppose that \(A \) is Gorenstein. Then \(\text{smon}(B, \mathcal{G}p(A)) = \mathcal{G}p(\Lambda) \) if and only if \(B \) is CM-free.
Via filtration categories

\[\mathcal{G} p(A) \otimes \mathcal{G} p(B) := \{ X \otimes_k Y \in A \otimes_k B \mod | X \in \mathcal{G} p(A), \ Y \in \mathcal{G} p(B) \} \]

\[\tilde{\text{filt}}(\mathcal{G} p(A) \otimes \mathcal{G} p(B)) \subset \mathcal{G} p(A \otimes_k B) \]
Via filtration categories

\[\mathcal{G}p(A) \otimes \mathcal{G}p(B) := \{ X \otimes_k Y \in A \otimes_k B \mod | \ X \in \mathcal{G}p(A), \ Y \in \mathcal{G}p(B) \} \]

\[\tilde{\text{filt}}(\mathcal{G}p(A) \otimes \mathcal{G}p(B)) \subset \mathcal{G}p(A \otimes_k B) \]

Question: Does \(\mathcal{G}p(A \otimes_k B) \) coincide with \(\tilde{\text{filt}}(\mathcal{G}p(A) \otimes \mathcal{G}p(B)) \)?
Via filtration categories

\(\mathcal{G}p(A) \otimes \mathcal{G}p(B) := \{ X \otimes_k Y \in A \otimes_k B - \text{mod} \mid X \in \mathcal{G}p(A), \ Y \in \mathcal{G}p(B) \} \)

\(\widetilde{\text{filt}}(\mathcal{G}p(A) \otimes \mathcal{G}p(B)) \subset \mathcal{G}p(A \otimes_k B) \)

Question: Does \(\mathcal{G}p(A \otimes_k B) \) coincide with \(\widetilde{\text{filt}}(\mathcal{G}p(A) \otimes \mathcal{G}p(B)) \)?

Theorem 2.7 (joint with W. Hu, B. Xiong and G. Zhou 2018)

Let \(A \) and \(B \) be Gorenstein algebras. Assume that \(k \) is a splitting field for \(A \) or \(B \). Then \(\mathcal{G}p(A \otimes_k B) = \widetilde{\text{filt}}(\mathcal{G}p(A) \otimes \mathcal{G}p(B)) \).
Via filtration categories

\[\mathcal{G}p(A) \otimes \mathcal{G}p(B) := \{ X \otimes_k Y \in A \otimes_k B \mid X \in \mathcal{G}p(A), \ Y \in \mathcal{G}p(B) \} \]
\[\tilde{\text{filt}}(\mathcal{G}p(A) \otimes \mathcal{G}p(B)) \subset \mathcal{G}p(A \otimes_k B) \]

Question: Does \(\mathcal{G}p(A \otimes_k B) \) coincide with \(\tilde{\text{filt}}(\mathcal{G}p(A) \otimes \mathcal{G}p(B)) \)?

Theorem 2.7 (joint with W. Hu, B. Xiong and G. Zhou 2018)

- Let \(A \) and \(B \) be Gorenstein algebras. Assume that \(k \) is a splitting field for \(A \) or \(B \). Then \(\mathcal{G}p(A \otimes_k B) = \tilde{\text{filt}}(\mathcal{G}p(A) \otimes \mathcal{G}p(B)) \).
- Let \(A \) be an algebra, and let \(B \) be a upper triangular algebra such that \(k \) is a splitting field for \(B \). Then \(\mathcal{G}p(A \otimes_k B) = \tilde{\text{filt}}(\mathcal{G}p(A) \otimes \mathcal{G}p(B)) \).

D. Simson, Representation types of the category of subprojective representations of a finite poset over $K[t]/(t^m)$ and a solution of a Birkhoff type problem, J. Algebra 311(2007), 1-30.

B. Xiong, P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras, Algebra Colloquium 23(2016), 97-104.

Thank You!