The poset of exact structures and Gabriel-Roiter measure

Thomas Brüstle, Souheila Hassoun*, Denis Langford*, and Sunny Roy Université de Sherbrooke, QC, Canada

Reduction of exact structures

We study exact categories in the sense of Quillen [Qu]: Consider a class \mathcal{E} of kernel-cokernel pairs (i,d) on an additive category \mathcal{A} . The morphisms (i,d) in \mathcal{E} are referred to as admissible monics and admissible epics. Then \mathcal{E} is called an *exact structure* on \mathcal{A} if it is closed under isomorphisms and satisfies the following axioms:

- (A0) For all objets $A \in Obj\mathcal{A}$ the identity 1_A is an admissible monic and an admissible epic.
- (A1) The class of admissible monics is closed under composition, likewise for admissible epics.
- (A2) The push-out of an admissible monic along an arbitrary morphism exists and yields an admissible monic; the pull-back of an admissible epic along an arbitrary morphism exists and yields an admissible epic.

Definition: A reduction of an exact category (A, \mathcal{E}) is the choice of an exact structure $\mathcal{E}' \subseteq \mathcal{E}$ giving rise to a new exact category (A, \mathcal{E}') .

Our main method to reduce exact structures is using exact functors:

Definition: Let (A, \mathcal{E}_A) and (B, \mathcal{E}_B) be exact categories and $F : A \to B$ an exact functor, that is, the image (Fi, Fd) of each exact pair (i, d) in \mathcal{E}_A is exact in B. We define the following structure

$$\mathcal{E}_F = \{ \xi : 0 \to A \to B \to C \to 0 \mid F(\xi) \text{ is split exact in } \mathcal{B} \} \subset \mathcal{E}_A$$

where ξ are short exact sequences in $\mathcal{E}_{\mathcal{A}}$.

Proposition

 $(\mathcal{A},\mathcal{E}_F)$ is an exact category.

Example 1. Let Q be the quiver

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

and $\mathcal{A} = \operatorname{rep} Q$ the category of finite-dimensional representations of Q, endowed with the abelian exact structure \mathcal{E}_{ab} of all short exact sequences.

• Consider the full subquiver $Q'=1 \stackrel{\alpha}{=} 2$ of Q, and let F be the restriction functor

$$F = \mathsf{Res}_{Q'} : \mathsf{rep}\,Q \to \mathsf{rep}\,Q'.$$

Then the exact structure $\mathcal{E}_F = \mathcal{E}_{\alpha}$ is formed by all short exact sequences of rep Q that split when restricted to the subquiver Q'. Moreover \mathcal{E}_{α} coincides with the exact structure $\mathcal{E}_{2,3,5}$ from example 3.

• Now consider the quiver $Q'=1 \stackrel{\gamma}{\to} 3$, and let G: rep $Q \to \operatorname{rep} Q'$ be the contraction functor given by

$$G(V_1 \overset{V_lpha}{\rightarrow} V_2 \overset{V_eta}{\rightarrow} V_3) = V_1 \overset{V_eta V_lpha}{\rightarrow} V_3$$

Then G is exact, and the exact structure \mathcal{E}_G coincides with the exact structure $\mathcal{E}_{1,2}$ from example 3.

The notion of reduction of exact structures is closely related to **matrix reductions**. In example 1 above, the exact structure \mathcal{E}_{α} formed by all short exact sequences that split when restricted to α corresponds to reducing the matrix corresponding to the arrow α . A full sequence of matrix reductions for the quiver Q is given as follows:

$$[A], [B] \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, [B_1 \ B_2] \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ B_{12} & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

It corresponds to the path of reductions of exact structures from example 3 given by

$$\mathcal{E}_{ab}
ightarrow \mathcal{E}_{lpha}
ightarrow \mathcal{E}_{2}
ightarrow \mathcal{E}_{min}$$

Contact Information

thomas.brustle@usherbrooke.ca
souheila.hassoun@usherbrooke.ca
denis.langford@usherbrooke.ca
sunny.roy@usherbrooke.ca

Gabriel-Roiter measure on exact categories

We generalize Krause's axiomatic description [Kr] of the Gabriel-Roiter measure on an abelian length category to the context of exact categories. Let therefore $(\mathcal{A}, \mathcal{E})$ be an essentially small exact category, and let $Obj\mathcal{A}$ ($ind\mathcal{A}$) be the set of ismorphism classes of (indecomposable) objects of \mathcal{A} .

Definition: A non-zero object S in (A, \mathcal{E}) is \mathcal{E} -simple if S admits no \mathcal{E} -subobjects except S and S, that is, whenever $X \subset_{\mathcal{E}} S$, then X is the zero object or isomorphic to S.

Definition: An object X of $(\mathcal{A}, \mathcal{E})$ is $\mathcal{E}-$ Artinian $(\mathcal{E}-$ Noetherian) if any descending (increasing) sequence of $\mathcal{E}-$ subobjects of X

$$\longrightarrow X_n \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_1 \longrightarrow X_0$$

becomes stationary. An object X is called \mathcal{E} -finite if it is at the same time \mathcal{E} -Artinian and \mathcal{E} -Noetherian. A finite exact category is an exact category $(\mathcal{A}, \mathcal{E})$ in which any object is \mathcal{E} -finite.

Definition: Define the \mathcal{E} -length function $l_{\mathcal{E}}: Obj\mathcal{A} \to \mathbb{N} \cup \{\infty\}$ as supremum over the length of a chain of admissible monics which are not isomorphisms. That is, for an object X of $(\mathcal{A}, \mathcal{E})$, one has $l_{\mathcal{E}}(X) = n$ if and only if n is the maximal length of a chain of admissible monics which are not isomorphisms

$$0 = X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_{n-1} \longrightarrow X_n = X$$

where $X_i \in Obj\mathcal{A}$ for all i. We say X has finite length if $l_{\mathcal{E}}(X) < \infty$.

Definition: A measure for a poset S is a morphism of posets $\mu: S \to \mathcal{P}$ where (\mathcal{P}, \leq) is a totally ordered set.

Theorem

The length function $l_{\mathcal{E}}$ of an $\mathcal{E}-$ finite essentially small exact category $(\mathcal{A},\mathcal{E})$ is a measure for the poset $Obj\mathcal{A}$.

Lemma (Reduction of length)

If \mathcal{E} and \mathcal{E}' are exact structures on \mathcal{A} , such that $\mathcal{E}' \subseteq \mathcal{E}$, then $l_{\mathcal{E}'}(X) \leq l_{\mathcal{E}}(X)$ for all objects X of \mathcal{A} .

Example 2. An \mathcal{E} -simple object in an exact category $(\mathcal{A}, \mathcal{E})$ is indecomposable, since the canonical inclusion $X_1 \stackrel{i_1}{\rightharpoonup} X_1 \oplus X_2$ is admissible in every exact structure \mathcal{E} ([Bü]). Conversely, when \mathcal{E} is the split exact structure \mathcal{E}_{min} , then every indecomposable object is \mathcal{E}_{min} -simple and $l_{\mathcal{E}_{min}}(X) = 1$. By taking $X \in ind_{\mathcal{A}}$ where $\mathcal{A} = \operatorname{rep} Q$ and $Q = A_3$ as in example 3, we have for $\mathcal{E}_{min} \subseteq \mathcal{E}_{2,3,5} \subseteq \mathcal{E}_{ab}$ that $l_{\mathcal{E}_{min}}(111) = 1 < l_{\mathcal{E}_{2,3,5}}(111) = 2 < l_{\mathcal{E}_{ab}}(111) = 3$.

Let (A, \mathcal{E}) be an \mathcal{E} —finite essentially small exact category.

Definition A morphism $\mu_{\mathcal{E}}: (ind\mathcal{A}, \subset_{\mathcal{E}}) \to (\mathcal{P}, \leq)$ is called a Gabriel-Roiter measure on the exact category $(\mathcal{A}, \mathcal{E})$ if it verifies the following axioms

 (M_1) $\mu_{\mathcal{E}}$ is a measure

 (M_2) $\mu_{\mathcal{E}}(X) = \mu_{\mathcal{E}}(Y) \Longrightarrow l_{\mathcal{E}}(X) = l_{\mathcal{E}}(Y) \ \forall X, Y \in ind\mathcal{A}$

 (M_3) If $l_{\mathcal{E}}(X) \geq l_{\mathcal{E}}(Y)$ and $\mu_{\mathcal{E}}(X') \not\subseteq \mu_{\mathcal{E}}(Y) \ \forall X' \subseteq_{\mathcal{E}} X$ so $\mu_{\mathcal{E}}(X) \leq \mu_{\mathcal{E}}(Y)$.

Theorem: There exist a Gabriel-Roiter measure $\mu_{\mathcal{E}}$ for $ind\mathcal{A}$.

Proof For a fixed object $X \in ind\mathcal{A}$, we consider the filtrations ending by X

$$F_{\mathcal{E}}(X): X_1 \subsetneq_{\mathcal{E}} ... \subsetneq_{\mathcal{E}} X_n = X$$

where $X_i \in ind\mathcal{A}$ for all i and we consider all vectors

 $l_{\mathcal{E}}(F_{\mathcal{E}}(X)) = (l_{\mathcal{E}}(X_1), ..., l_{\mathcal{E}}(X_n))$

One can define

$$\mu_{\mathcal{E}}: ind\mathcal{A} \to (\mathfrak{S}(\mathbb{N}), \ll);$$

$$X \longmapsto \mu_{\mathcal{E}}(X) = max(l_{\mathcal{E}}(F_{\mathcal{E}}(X)))_{F_{\mathcal{E}}(X)}$$

where $\mathfrak{S}(\mathbb{N})$ is the set of all vectors of natural numbers and \ll is the inverse lexicographic order, so $(\mathfrak{S}(\mathbb{N}), \ll)$ forms a totally ordered set. One can verify that $\mu_{\mathcal{E}}$ satisfies the three axioms of a Gabriel-Roiter measure.

The poset of exact structures

Definition: Let \mathcal{A} be an additive category. We denote by $(\mathcal{P}_{\mathcal{A}}, \subseteq)$ the poset of exact structures \mathcal{E} on \mathcal{A} , where the partial order is given by inclusion $\mathcal{E}' \subseteq \mathcal{E}$.

Lemma: [Bü] For any additive category A, the sequences isomorphic to

$$A \stackrel{\left[egin{smallmatrix} 1 \ 0 \end{smallmatrix} \end{smallmatrix} A \oplus B^{\left[01
ight]} ag{B}$$

form an exact structure \mathcal{E}_{min} , called the split exact structure.

Clearly, \mathcal{E}_{min} forms the minimal element in the poset $(\mathcal{P}_{\mathcal{A}},\subseteq)$. The following proposition describes the immediate successors of \mathcal{E}_{min} if \mathcal{A} is the category of finite-dimensional modules over a finite-dimensional algebra A:

Proposition

Let A be a finite dimensional algebra and $\operatorname{mod} A$ the category of finitely generated modules over A. Let ξ_i be an Auslander-Reiten sequence in $\operatorname{mod} A$, then $\mathcal{E}_i = \{X \oplus Y | X \in \mathcal{E}_{min}, Y \in \operatorname{add}(\xi_i)\}$ is an exact structure.

Example 3. Consider the category $A = \operatorname{rep} Q$ of representations of the quiver

$$Q: 1 \longrightarrow 2 \longrightarrow 3$$

Then all non-split exact sequences are:

(AR1) $0 \rightarrow 010 \rightarrow 110 \rightarrow 100 \rightarrow 0$

(AR2) $0 \rightarrow 001 \rightarrow 011 \rightarrow 010 \rightarrow 0$

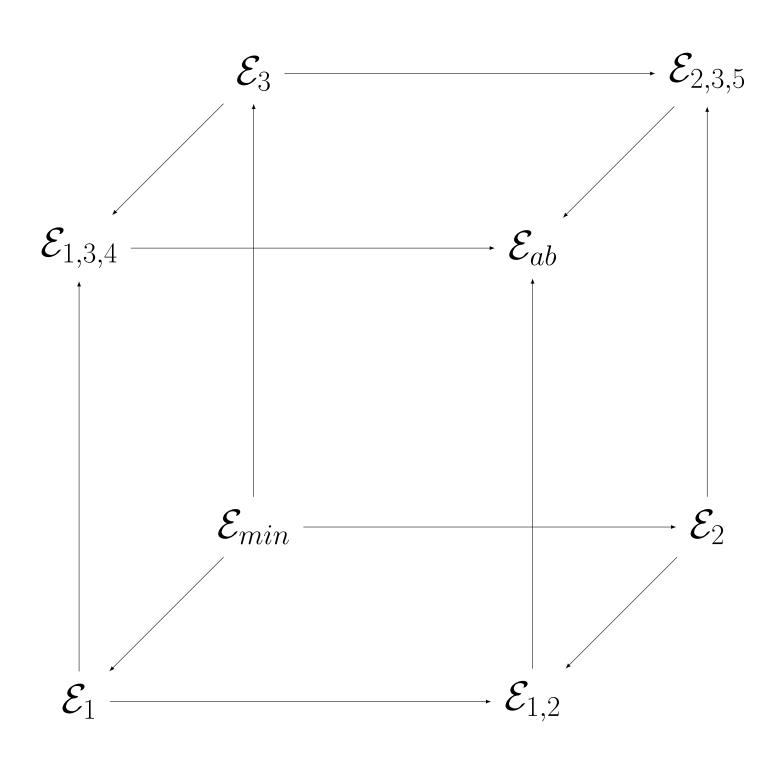
(AR3) $0 \rightarrow 011 \rightarrow 111 \oplus 010 \rightarrow 110 \rightarrow 0$

(5) $0 \rightarrow 001 \rightarrow 111 \rightarrow 110 \rightarrow 0$

The following list enumerates all exact structures \mathcal{E} on \mathcal{A} :

- \mathcal{E}_{ab} is the set of all short exact sequences in \mathcal{A} . Thus $(\mathcal{A}, \mathcal{E}_{ab})$ is the abelian structure on the category $\mathcal{A} = \operatorname{rep} Q$,
- ullet \mathcal{E}_{min} is the set of all split short exact sequences in \mathcal{A} ,
- $\mathcal{E}_1 = \{X \oplus Y | X \in \mathcal{E}_{min}, Y \in add(AR1)\}$,
- $\mathcal{E}_2 = \{X \oplus Y | X \in \mathcal{E}_{min}, Y \in add(AR2)\},$
- $\mathcal{E}_3 = \{X \oplus Y | X \in \mathcal{E}_{min}, Y \in add(AR3)\},$
- $\mathcal{E}_{1,2} = \mathcal{E}_1 \oplus \mathcal{E}_2 = \{X \oplus Y \mid X \in \mathcal{E}_1, Y \in \mathcal{E}_2\},$
- $\mathcal{E}_{2,3,5} = \{X \oplus Y \oplus Z | X \in \mathcal{E}_2, Y \in \mathcal{E}_3, Z \in add(5)\},$
- $\mathcal{E}_{1,3,4} = \{X \oplus Y \oplus Z | X \in \mathcal{E}_1, Y \in \mathcal{E}_3, Z \in add(4)\}.$

Going back to the previous example $\mathcal{E}_{2,3,5} = \mathcal{E}_{\alpha}$, $\mathcal{E}_{1,3,4} = \mathcal{E}_{\beta}$ and $\mathcal{E}_{1,2} = \mathcal{E}'$. Hence the poset of exact structures $(\mathcal{P}_{\mathcal{A}}, \subseteq)$ is described by the following graph, where the oriented arrows present inclusions:



We have for example the following sequence of reductions $\mathcal{E}_{min} \subseteq \mathcal{E}_2 \subseteq \mathcal{E}_{2,3,5} \subseteq \mathcal{E}_{ab}$.

References

- [Bü] T.Bühler, Exact categories. Expo. Math. 28 (2010), no. 1, 1–69.
- [Kr] H.Krause, An axiomatic characterization of the Gabriel-Roiter measure. Bull. Lond. Math. Soc. 39 (2007), no. 4, 550–558.
- [Qu] D.Quillen, Higher algebraic K-theory. I, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341.