The postr of exact structures and Gabriel-Roiter measure
Thomas Brüstle, Souheila Hassouni*, Denis Langford†, and Sunny Roy
Université de Sherbrooke, QC, Canada

Reduction of exact structures

We study exact categories in the sense of Quillen [Q]. Consider a class E of kernel-cokernel pairs (i, d) on an additive category A. The morphisms $(i, d) \in E$ are referred to as admissible monics and admissible epics. Then E is called an exact structure on A if it is closed under isomorphisms and satisfies the following axioms:

(0) For all objects $A \in Ob(A)$ the identity 1_A is an admissible monic and an admissible epic.

(A1) The class of admissible monics is closed under composition, likewise for admissible epics.

(A2) The push-out of an admissible monic along an arbitrary morphism exists and yields an admissible monic; the pull-back of an admissible epic along an arbitrary morphism exists and yields an admissible epic.

Definition: A reduction of an exact structure (A, E) is the choice of an exact structure $E' \subseteq E$ giving rise to a new exact category (A, E'). Our main result to reduce exact structures is exactly the following function:

Definition: Let (A, E_s) and (B, E) be exact categories and $F : A \to B$ an exact functor, that is, the (F_i, F_d) of each exact pair $(i, d) \in E_s$ is exact in B. We define the following structure $E' = \{ (\epsilon ; 0 : A \to B \to C \to 0 \mid F(\epsilon) \text{ is split exact in } B \} \subseteq E_A$ where ϵ are short exact sequences in E_A.

\[\text{Lemma (Reduction of length)} \]
If E and E' are exact structures on A, such that $E' \subseteq E$, then $l_2(X) \leq l_1(X)$ for all objects X of A.

Example 2. An E'-simple object in an exact category (A, E') is ind-composable, since the canonical inclusion $X_0 = X_1 \oplus X_2$ is admissible in every exact structure E_1 [Bü]. Conversely, when E is the split exact structure E_{split}, then every ind-composable object is E_{split}-simple and $l_{E_{\text{split}}}(X) = 1$. By taking $X \in \text{ind}_A$ where $A = \text{rep}(Q)$ and $Q = A_3$ as in example 3, we have for $X_{\text{split}} \subseteq E_{\text{split}} \subseteq E_A$ that $l_{E_{\text{split}}}(X) = 1 < l_{E_{\text{split}}}(X) = 2 < l_{E}(X) = 3$.

Let (A, E) be an E'-finite essentially small exact category. A morphism of exact structures $\phi : (A, E) \to (P, \Theta)$ is called a Gabriel-Roiter measure on the exact category (A, E) if it verifies the following axioms:

(1) ϕ is a measure.

(2) ϕ is Θ-ind-composable and $\phi(X) \subseteq \Theta(X)$ for all $X \in \text{ind}_A$.

Theorem: There exist a Gabriel-Roiter measure for ind_A.

Proof: For a fixed object $X \in \text{ind}_A$, we consider the filtrations ending by X and we consider all vectors $\phi(X)$.

One can define

\[\begin{align*}
\phi(X) &= \text{max}\{\mu(X) \mid X \in \text{ind}_A\} \\
\phi(X) &= \text{max}\{\mu(X) \mid X \in \text{ind}_A\}
\end{align*} \]

where $\Theta(N)$ is the set of all vectors of natural numbers and μ is the inverse lexicographic order, so $(\Theta(N), \leq)$ forms a totally ordered set. One can verify that ϕ satisfies the three axioms of a Gabriel-Roiter measure.

Contact Information

thomas.brustle@usherbrooke.ca
souheila.hassouni@usherbrooke.ca
denis.langford@usherbrooke.ca
sunny.roy@usherbrooke.ca

References

