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Reduction of exact structures

We study exact categories in the sense of Quillen [Qu]: Consider a class E of kernel-cokernel pairs
(i, d) on an additive category A. The morphisms (i, d) in E are referred to as admissible monics and
admissible epics. Then E is called an exact structure on A if it is closed under isomorphisms and
satisfies the following axioms:

(A0) For all objets A ∈ ObjA the identity 1A is an admissible monic and an admissible epic.
(A1) The class of admissible monics is closed under composition, likewise for admissible epics.
(A2) The push-out of an admissible monic along an arbitrary morphism exists and yields an

admissible monic; the pull-back of an admissible epic along an arbitrary morphism exists and
yields an admissible epic.

Definition: A reduction of an exact category (A, E) is the choice of an exact structure E ′ ⊆ E
giving rise to a new exact category (A, E ′).

Our main method to reduce exact structures is using exact functors:
Definition: Let (A, EA) and (B, EB) be exact categories and F : A → B an exact functor, that is,
the image (Fi, Fd) of each exact pair (i, d) in EA is exact in B. We define the following structure

EF = {ξ : 0→ A→ B → C → 0 | F (ξ) is split exact in B} ⊂ EA

where ξ are short exact sequences in EA.

Proposition

(A, EF ) is an exact category.

Example 1. Let Q be the quiver
1 α //2 β

//3

and A = repQ the category of finite-dimensional representations of Q, endowed with the abelian
exact structure Eab of all short exact sequences.
• Consider the full subquiver Q′ = 1 α //2 of Q, and let F be the restriction functor

F = ResQ′ : repQ→ repQ′.
Then the exact structure EF = Eα is formed by all short exact sequences of repQ that split
when restricted to the subquiver Q′. Moreover Eα coincides with the exact structure E2,3,5 from
example 3.

• Now consider the quiver Q′ = 1 γ
//3 , and let G : repQ→ repQ′ be the contraction functor

given by
G(V1

Vα //V2
Vβ

//V3 ) = V1
VβVα

//V3

Then G is exact, and the exact structure EG coincides with the exact structure E1,2 from
example 3.

The notion of reduction of exact structures is closely related to matrix reductions. In example
1 above, the exact structure Eα formed by all short exact sequences that split when restricted to α
corresponds to reducing the matrix corresponding to the arrow α. A full sequence of matrix reductions
for the quiver Q is given as follows:

A
 ,

B
 //


1 0
0 0

,
B1 B2

 //



1 0
0 0
0 0


,


0 1 0
B12 0 0

 //



1 0 0
0 1 0
0 0 0
0 0 0



,



0 0 1 0
1 0 0 0
0 0 0 0



It corresponds to the path of reductions of exact structures from example 3 given by
Eab → Eα → E2 → Emin
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Gabriel-Roiter measure on exact categories

We generalize Krause’s axiomatic description [Kr] of the Gabriel-Roiter measure on an abelian length
category to the context of exact categories. Let therefore (A, E) be an essentially small exact category,
and let ObjA (indA) be the set of ismorphism classes of (indecomposable) objects of A.

Definition: A non-zero object S in (A, E) is E−simple if S admits no E−subobjects except 0 and
S, that is, whenever X ⊂E S, then X is the zero object or isomorphic to S.

Definition: An object X of (A, E) is E−Artinian (E−Noetherian) if any descending (increasing)
sequence of E−subobjects of X

// //Xn
// //Xn−1 // // · · · // // X1 // // X0

becomes stationary. An object X is called E−finite if it is at the same time E−Artinian and
E−Noetherian. A finite exact category is an exact category (A, E) in which any object is E−finite.

Definition: Define the E−length function lE : ObjA → N ∪ {∞} as supremum over the length of
a chain of admissible monics which are not isomorphisms. That is, for an object X of (A, E), one
has lE(X) = n if and only if n is the maximal length of a chain of admissible monics which are not
isomorphisms

0 = X0 // //X1 // // · · · // // Xn−1 // // Xn = X

where Xi ∈ ObjA for all i. We say X has finite length if lE(X) <∞.
Definition: A measure for a poset S is a morphism of posets µ : S → P where (P ,≤) is a totally
ordered set.

Theorem

The length function lE of an E−finite essentially small exact category (A, E) is a measure for the
poset ObjA.

Lemma (Reduction of length)

If E and E ′ are exact structures on A, such that E ′ ⊆ E , then lE ′(X) ≤ lE(X) for all objects X
of A.

Example 2. An E−simple object in an exact category (A, E) is indecomposable, since the canonical
inclusion X1 //

i1 //X1 ⊕X2 is admissible in every exact structure E ([Bü]). Conversely, when E is the
split exact structure Emin, then every indecomposable object is Emin−simple and lEmin(X) = 1. By
taking X ∈ indA where A = repQ and Q = A3 as in example 3, we have for Emin ⊆ E2,3,5 ⊆ Eab
that lEmin(111) = 1 < lE2,3,5(111) = 2 < lEab(111) = 3.

Let (A, E) be an E−finite essentially small exact category.
Definition A morphism µE : (indA,⊂E)→ (P ,≤) is called a Gabriel-Roiter measure on the exact
category (A, E) if it verifies the following axioms

(M1) µE is a measure
(M2) µE(X) = µE(Y ) =⇒ lE(X) = lE(Y ) ∀X, Y ∈ indA
(M3) If lE(X) ≥ lE(Y ) and µE(X ′) � µE(Y ) ∀X ′(EX so µE(X) ≤ µE(Y ).

Theorem: There exist a Gabriel-Roiter measure µE for indA.

Proof For a fixed object X ∈ indA, we consider the filtrations ending by X
FE(X) : X1(E...(EXn = X

where Xi ∈ indA for all i and we consider all vectors
lE(FE(X)) = (lE(X1), ..., lE(Xn))

One can define
µE : indA → (S(N),≪);

X 7−→ µE(X) = max(lE(FE(X)))FE(X)

where S(N) is the set of all vectors of natural numbers and ≪ is the inverse lexicographic order,
so (S(N),≪) forms a totally ordered set. One can verify that µE satisfies the three axioms of a
Gabriel-Roiter measure.

The poset of exact structures

Definition: Let A be an additive category. We denote by (PA,⊆) the poset of exact structures E
on A, where the partial order is given by inclusion E ′ ⊆ E .

Lemma:[Bü] For any additive category A, the sequences isomorphic to

A

10

//A⊕B[01]

//B

form an exact structure Emin, called the split exact structure.
Clearly, Emin forms the minimal element in the poset (PA,⊆). The following proposition describes
the immediate successors of Emin if A is the category of finite-dimensional modules over a finite-
dimensional algebra A:

Proposition

Let A be a finite dimensional algebra and modA the category of finitely generated modules over
A. Let ξi be an Auslander-Reiten sequence in modA, then Ei = {X⊕Y |X ∈ Emin, Y ∈ add(ξi)}
is an exact structure.

Example 3. Consider the category A = repQ of representations of the quiver
Q : 1 −→ 2 −→ 3

Then all non-split exact sequences are:
(AR1) 0 //010 //110 //100 //0
(AR2) 0 //001 //011 //010 //0
(AR3) 0 //011 //111⊕ 010 //110 //0

(4) 0 //011 //111 //100 //0
(5) 0 //001 //111 //110 //0

The following list enumerates all exact structures E on A:
• Eab is the set of all short exact sequences in A. Thus (A, Eab) is the abelian structure on the
category A = repQ,
• Emin is the set of all split short exact sequences in A,
• E1 = {X ⊕ Y |X ∈ Emin, Y ∈ add(AR1)},
• E2 = {X ⊕ Y |X ∈ Emin, Y ∈ add(AR2)},
• E3 = {X ⊕ Y |X ∈ Emin, Y ∈ add(AR3)},
• E1,2 = E1 ⊕ E2 = {X ⊕ Y |X ∈ E1, Y ∈ E2},
• E2,3,5 = {X ⊕ Y ⊕ Z|X ∈ E2, Y ∈ E3, Z ∈ add(5)},
• E1,3,4 = {X ⊕ Y ⊕ Z|X ∈ E1, Y ∈ E3, Z ∈ add(4)}.

Going back to the previous example E2,3,5 = Eα, E1,3,4 = Eβ and E1,2 = E ′. Hence the poset of exact
structures (PA,⊆) is described by the following graph, where the oriented arrows present inclusions:

Emin E2

E2,3,5E3

E1 E1,2

EabE1,3,4

We have for example the following sequence of reductions Emin ⊆ E2 ⊆ E2,3,5 ⊆ Eab.
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