A McKay correspondence for reflections groups
joint work with Ragnar-Olaf Buchweitz and Colin Ingalls

Eleonore Faber
University of Michigan

Auslander Conference, Woods Hole 2016
Kleinian singularities

Focus on $n = 2$, and $k = \mathbb{C}$. Then

Theorem (F. Klein, 1884)

Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group. Then the quotient singularity $X = \mathbb{C}^2 / \Gamma = \text{Spec}(S^\Gamma)$, i.e., the orbit space of Γ acting on \mathbb{C}^2, is of the form

$$X = \text{Spec}(\mathbb{C}[x, y, z]/(f)),$$
Focus on $n = 2$, and $k = \mathbb{C}$. Then

Theorem (F. Klein, 1884)

Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group. Then the quotient singularity $X = \mathbb{C}^2 / \Gamma = \text{Spec}(S^\Gamma)$, i.e., the orbit space of Γ acting on \mathbb{C}^2, is of the form

$$X = \text{Spec}(\mathbb{C}[x, y, z]/(f)),$$

where f is of type

- A_n: $z^2 + y^2 + x^{n+1}$,
- D_n: $z^2 + x(y^2 + x^{n-2})$ for $n \geq 4$,
- E_6: $z^2 + x^3 + y^4$,
- E_7: $z^2 + x(x^2 + y^3)$,
- E_8: $z^2 + x^3 + y^5$.
A_1 and A_2 – the cone and the cusp

$x^2 + y^2 - z^2 = 0$

$z^2 + y^2 - x^3 = 0$
A_3 and A_4

$z^2 + y^2 - x^4 = 0$

$z^2 + y^2 - x^5 = 0$
A_5 and A_6

\[z^2 + y^2 - x^6 = 0 \]

\[z^2 + y^2 - x^7 = 0 \]
$D_4 : z^2 + x(y^2 - x^2) = 0$
D_5 and D_6

\[z^2 + x(y^2 - x^3) = 0 \]

\[z^2 + x(y^2 - x^4) = 0 \]
Classical McKay correspondence

D_7 and D_8

\[z^2 + x(y^2 - x^5) = 0 \]

\[z^2 + x(y^2 - x^6) = 0 \]
$E_6 : \quad z^2 + x^3 + y^4 = 0$
$E_7 : \quad z^2 + x(x^2 + y^3) = 0$
$E_8 : \quad z^2 + x^3 + y^5 = 0$
Let X be a normal surface singularity and let $\pi : \tilde{X} \to X$ be its minimal resolution, with exceptional curves $\bigcup_i E_i$.
Let X be a normal surface singularity and let $\pi : \tilde{X} \rightarrow X$ be its minimal resolution, with exceptional curves $\bigcup_i E_i$. Form a graph with

- vertices: $i \leftrightarrow E_i$
- edges: $i - j \leftrightarrow E_i \cap E_j \neq \emptyset$.

Theorem (Du Val)

The dual resolution resolution graphs of the Kleinian singularities are Coxeter–Dynkin diagrams of type ADE.
Let X be a normal surface singularity and let $\pi : \tilde{X} \to X$ be its minimal resolution, with exceptional curves $\bigcup_i E_i$.
Form a graph with
- vertices: $i \leftrightarrow E_i$
- edges: $i - j \leftrightarrow E_i \cap E_j \neq \emptyset$.

Theorem (Du Val)

The dual resolution resolution graphs of the Kleinian singularities are Coxeter–Dynkin diagrams of type ADE.
Example: $x^2 + y^2 = z^2$

Dual resolution graph of type A_1:

\[\pi \]
Example: $z^2 + x(y^2 - x^2) = 0$
Example: $z^2 + x(y^2 - x^2) = 0$

Dual resolution graph of type D_4:
McKay correspondence

Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group with irreducible representations ρ_0, \ldots, ρ_m:

$\rho_0 = \text{trivial representation}$,

$\rho_1 = c = \text{canonical representation} \quad \Gamma \hookrightarrow GL_2(\mathbb{C})$.

Observation (J. McKay, 1979): These graphs are extended Coxeter-Dynkin diagrams of type ADE (with arrows in both directions).
Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group with irreducible representations ρ_0, \ldots, ρ_m:

- $\rho_0 =$ trivial representation,
- $\rho_1 = c =$ canonical representation $\Gamma \hookrightarrow GL_2(\mathbb{C})$.

Form a graph:

- Vertices: $i \longleftrightarrow \rho_i$
- Arrows: $i \xrightarrow{m_{ij}} j$ iff ρ_j appears with multiplicity m_{ij} in the tensor product representation $c \otimes \rho_i$.
Let $\Gamma \subseteq SL_2(\mathbb{C})$ be a finite group with irreducible representations ρ_0, \ldots, ρ_m:

$\rho_0 =$ trivial representation,
$\rho_1 = c =$ canonical representation $\Gamma \hookrightarrow GL_2(\mathbb{C})$.

Form a graph:
- Vertices: $i \leftrightarrow \rho_i$
- Arrows: $i \overset{m_{ij}}{\rightarrow} j$ iff ρ_j appears with multiplicity m_{ij} in the tensor product representation $c \otimes \rho_i$

Observation (J. McKay, 1979): These graphs are extended Coxeter Dynkin diagrams of type ADE (with arrows in both directions).
Definition: D_4

The group Γ is generated by

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Five irreps ρ_i, four one-dimensional and one two-dimensional $\rho_1 = c$.

Eleonore Faber (University of Michigan) McKay for reflections Woods Hole 2016
Example: \(D_4 \)

The group \(\Gamma \) is generated by

\[
\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.
\]

Five irreps \(\rho_i \), four one-dimensional and one two-dimensional \(\rho_1 = c \).

The McKay graph:
Thus for $n = 2$ and $\Gamma \in SL_2(\mathbb{C})$:
Have 1-1 correspondence between
- exceptional curves E_i on the minimal resolution of \mathbb{C}^2/Γ.
- irreducible representations of Γ (mod the trivial representation).
- indecomposable projective $\Gamma \ast S = \text{End}_R S$-modules (modulo the trivial module).
- indecomposable CM-modules over R (modulo R itself). [This follows from \textit{Herzog's theorem}, which says that $\text{add}_R(S) = \text{CM}(R)$.]
Theorem (Buchweitz–F–Ingalls)

If $G \subseteq \text{GL}_2(\mathbb{C})$ is a reflection group, let $z = \prod_{s \in \text{reflections}(G)} l_s$ be the hyperplane arrangement and set $\Delta = z^2$. Let further $A = G \ast S$, $e = \frac{1}{|G|} \sum_{g \in G} g$, $\bar{A} = A / AeA$ and $T = S^G$. Then

$$\bar{A} \cong \text{End}_{T/\Delta}(S/z)$$

is a NCR of T/Δ, that is, gldim $\bar{A} = 2$ and S/z is in $\text{CM}(T/\Delta)$.

Theorem (Buchweitz–F–Ingalls)

If $G \subseteq GL_2(\mathbb{C})$ is a reflection group, let $z = \prod_{s \in \text{reflections}(G)} l_s$ be the hyperplane arrangement and set $\Delta = z^2$.

Let further $A = G \star S$, $e = \frac{1}{|G|} \sum_{g \in G} g$, $\bar{A} = A/AeA$ and $T = S^G$.

Then

$$\bar{A} \cong \text{End}_{T/\Delta}(S/z)$$

is a NCR of T/Δ, that is, $\text{gldim} \bar{A} = 2$ and S/z is in $\text{CM}(T/\Delta)$.

In particular:

$$\text{add}_{T/\Delta}(S/z) = \text{CM}(T/\Delta),$$

i.e., S/z is a CM-representation generator.
The swallowtail: Δ of S_4

$$16x^4z - 4x^3y^2 - 128x^2z^2 + 144xy^2z - 27y^4 + 256z^3 = 0$$
The swallowtail: Δ of S_4

$$16x^4z - 4x^3y^2 - 128x^2z^2 + 144xy^2z - 27y^4 + 256z^3 = 0$$

Here $S/z \simeq T/\Delta \oplus \widetilde{T/\Delta} \oplus \text{syz}(\widetilde{T/\Delta}) \oplus M_{2,0}^2$.
Questions

- What are the R-direct summands of S/z?
- Can one describe the R-direct summands of S/z for some specific groups, e.g., S_n?
- What about the geometry?