Standard Auslander-Reiten components of a Krull-Schmidt category

Shiping Liu (Sherbrooke)
Charles Paquette (New Brunswick)

Maurice Auslander International Conference

Woods Hole, MA, USA
April 18 - 23, 2013
A : finite dimensional k-algebra with $\bar{k} = k$.

The classical setting

- A: finite dimensional k-algebra with $\bar{k} = k$.

- $\text{mod } A$: category of fin dim left A-modules.

- Want to describe maps in $\text{mod } A$ between indecomposables.

- One introduces Auslander-Reiten quiver $\Gamma_{\text{mod } A}$.

- In general, $\Gamma_{\text{mod } A}$ describes maps not in $\text{rad } \infty (\text{mod } A)$.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt category
The classical setting

- A: finite dimensional k-algebra with $\bar{k} = k$.
- $\text{mod } A$: category of fin dim left A-modules.

Want to describe maps in $\text{mod } A$ between indecomposables. One introduces Auslander-Reiten quiver $\Gamma_{\text{mod } A}$.

In general, $\Gamma_{\text{mod } A}$ describes maps not in $\text{rad } \infty (\text{mod } A)$.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick)
The classical setting

- A: finite dimensional k-algebra with $\bar{k} = k$.
- $\text{mod } A$: category of fin dim left A-modules.
- Want to describe maps in $\text{mod } A$ between indecomposables.

One introduces Auslander-Reiten quiver $\Gamma_{\text{mod } A}$.
In general, $\Gamma_{\text{mod } A}$ describes maps not in $\text{rad } \infty (\text{mod } A)$.
The classical setting

- A: finite dimensional k-algebra with $\bar{k} = k$.
- $\text{mod } A$: category of fin dim left A-modules.
- Want to describe maps in $\text{mod } A$ between indecomposables.
- One introduces Auslander-Reiten quiver $\Gamma_{\text{mod } A}$.
The classical setting

- A: finite dimensional k-algebra with $\bar{k} = k$.
- $\text{mod } A$: category of fin dim left A-modules.
- Want to describe maps in $\text{mod } A$ between indecomposable.
- One introduces Auslander-Reiten quiver $\Gamma_{\text{mod } A}$.
- In general, $\Gamma_{\text{mod } A}$ describes maps not in $\text{rad}^\infty(\text{mod } A)$.
Standard components in a module category

Γ : component of $\Gamma_{\text{mod}A}$.
\(\Gamma : \) component of \(\Gamma_{\text{mod}A} \).

\(\text{add}(\Gamma) : \) additive category of modules in \(\Gamma \).
Γ: component of $\Gamma_{\text{mod} A}$.
$\text{add}(\Gamma)$: additive category of modules in Γ.
$k(\Gamma)$: mesh category of Γ over k.
\(\Gamma \): component of \(\Gamma_{\text{mod}A} \).
\(\text{add}(\Gamma) \): additive category of modules in \(\Gamma \).
\(k(\Gamma) \): mesh category of \(\Gamma \) over \(k \).

Definition (Ringel)

\(\Gamma \) is *standard* if \(\text{add}(\Gamma) \cong k(\Gamma) \).
Standard components in a module category

\[\Gamma : \text{component of } \Gamma_{\text{mod}A}. \]
\[\text{add}(\Gamma) : \text{additive category of modules in } \Gamma. \]
\[k(\Gamma) : \text{mesh category of } \Gamma \text{ over } k. \]

Definition (Ringel)

\[\Gamma \text{ is standard if } \text{add}(\Gamma) \cong k(\Gamma). \]

Example

\[\Gamma \text{ is standard in case} \]

\(\Gamma \): component of \(\Gamma_{\text{mod}A} \).
\(\text{add}(\Gamma) \): additive category of modules in \(\Gamma \).
\(k(\Gamma) \): mesh category of \(\Gamma \) over \(k \).

Definition (Ringel)

\(\Gamma \) is **standard** if \(\text{add}(\Gamma) \cong k(\Gamma) \).

Example

\(\Gamma \) is standard in case

1) (R, BG) \(A \) is rep-finite with \(\text{char}k \neq 2 \).
Standard components in a module category

Γ: component of $\Gamma_{\text{mod}A}$.
$\text{add}(\Gamma)$: additive category of modules in Γ.
$k(\Gamma)$: mesh category of Γ over k.

Definition (Ringel)

Γ is **standard** if $\text{add}(\Gamma) \cong k(\Gamma)$.

Example

Γ is standard in case

1) (R, BG) A is rep-finite with $\text{char} k \neq 2$.
2) (Ringel) A is tame concealed or tubular.
Standard components in a module category

\[\Gamma : \text{component of } \Gamma_{\text{mod}A}. \]
\[\text{add}(\Gamma) : \text{additive category of modules in } \Gamma. \]
\[k(\Gamma) : \text{mesh category of } \Gamma \text{ over } k. \]

Definition (Ringel)

\(\Gamma \) is **standard** if \(\text{add}(\Gamma) \cong k(\Gamma) \).

Example

\(\Gamma \) is standard in case

1) (R, BG) \(A \) is rep-finite with \(\text{char} k \neq 2 \).
2) (Ringel) \(A \) is tame concealed or tubular.
3) (Ringel) \(\Gamma \) is preprojective or preinjective.
Theorem (Skowronski)

Let \(\Gamma \) be component of \(\Gamma_{\text{modA}} \).
Theorem (Skowronski)

Let Γ be component of $\Gamma_{\text{mod}A}$.

1) If Γ is standard, then all but finitely many τ-orbits in Γ are periodic.
Theorem (Skowronski)

Let Γ be component of $\Gamma_{\text{mod}A}$.

1) If Γ is standard, then all but finitely many τ-orbits in Γ are periodic.

2) If Γ is regular and standard, then Γ is stable tube or $\Gamma \cong \mathbb{Z}\Delta$, where Δ a finite acyclic quiver.
Let \mathcal{A} an additive category with $f : X \to Y$.

Definition 1: f is a source morphism provided f is not a section, any non-section $g : X \to M$ factors through f, if $h : Y \to Y$ with $f = hf$, then h is an automorphism.

Definition 2: In the dual situation, f is a sink morphism.
Let \mathcal{A} an additive category with $f : X \to Y$.

Definition

1. f is *source morphism* provided
Let \mathcal{A} additive category with $f : X \to Y$.

Definition

1. f is *source morphism* provided
 - f is not section,
Let \mathcal{A} additive category with $f : X \to Y$.

Definition

1. f is *source morphism* provided
 - f is not section,
 - any non-section $g : X \to M$ factors through f, if $h : Y \to Y$ with $f = hf$, then h automorphism.

2. In dual situation, f is *sink morphism*.
Let \mathcal{A} additive category with $f : X \to Y$.

Definition

1. f is **source morphism** provided
 - f is not section,
 - any non-section $g : X \to M$ factors through f,
 - if $h : Y \to Y$ with $f = hf$, then h automorphism.
Let \mathcal{A} additive category with $f : X \to Y$.

Definition

1. f is *source morphism* provided
 - f is not section,
 - any non-section $g : X \to M$ factors through f,
 - if $h : Y \to Y$ with $f = hf$, then h automorphism.

2. In dual situation, f is *sink morphism*.
Definition

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called \textit{almost split sequence} provided

1. $Y \neq 0$,
2. f is a source morphism, and pseudo-kernel of g,
3. g is a sink morphism, and pseudo-cokernel of f.

Remark. The above notion unifies almost split sequences in abelian categories and almost split triangles in triangulated categories.
A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called an *almost split sequence* provided $Y \neq 0$, f is source morphism, and pseudo-kernel of g, g is sink morphism, and pseudo-cokernel of f.

Remark. The above notion unifies almost split sequences in abelian categories and almost split triangles in triangulated categories.
Almost split sequences

Definition

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called *almost split sequence* provided

1. $Y \neq 0$,
2. f is source morphism, and pseudo-kernel of g.

Remark. The above notion unifies almost split sequences in abelian categories and almost split triangles in triangulated categories.
Almost split sequences

Definition

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called *almost split sequence* provided

1. $Y \neq 0$,
2. f is source morphism, and pseudo-kernel of g,
3. g is sink morphism, and pseudo-cokernel of f.

Remark. The above notion unifies almost split sequences in abelian categories and almost split triangles in triangulated categories.
Almost split sequences

Definition

A sequence of morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ in \mathcal{A} is called *almost split sequence* provided

1. $Y \neq 0$,
2. f is source morphism, and pseudo-kernel of g,
3. g is sink morphism, and pseudo-cokernel of f.

Remark. The above notion unifies almost split sequences in abelian categories and almost split triangles in triangulated categories.
Let \(\mathcal{A} \) be Hom-finite Krull-Schmidt \(k \)-category.
Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X, Y \in \mathcal{A}$ are indecomposable, write
\[d_{X,Y} = \dim_k \text{rad}(X, Y)/\text{rad}^2(X, Y). \]
Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X, Y \in \mathcal{A}$ are indecomposable, write
\[d_{X,Y} = \dim_k \text{rad}(X, Y)/\text{rad}^2(X, Y). \]

Definition

AR-quiver $\Gamma_\mathcal{A}$ of \mathcal{A} is translation quiver as follows:
Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X, Y \in \mathcal{A}$ are indecomposable, write
$$d_{X,Y} = \dim_k \text{rad}(X, Y)/\text{rad}^2(X, Y).$$

Definition

AR-quiver $\Gamma_{\mathcal{A}}$ of \mathcal{A} is translation quiver as follows:
- **vertices**: the non-isomorphic indecomposables in \mathcal{A}.
Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X, Y \in \mathcal{A}$ are indecomposable, write

$$d_{X,Y} = \dim_k \text{rad}(X,Y)/\text{rad}^2(X,Y).$$

Definition

AR-quiver $\Gamma_\mathcal{A}$ of \mathcal{A} is translation quiver as follows:

- **vertices**: the non-isomorphic indecomposables in \mathcal{A}.
- **arrows**: given X, Y, the number of arrows $X \rightarrow Y$ is $d_{X,Y}$.

Let \mathcal{A} be Hom-finite Krull-Schmidt k-category. If $X, Y \in \mathcal{A}$ are indecomposable, write

$$d_{X,Y} = \dim_k \text{rad}(X, Y)/\text{rad}^2(X, Y).$$

Definition

AR-quiver $\Gamma_{\mathcal{A}}$ of \mathcal{A} is translation quiver as follows:

- **vertices**: the non-isomorphic indecomposables in \mathcal{A}.
- **arrows**: given X, Y, the number of arrows $X \to Y$ is $d_{X,Y}$.
- **translation**: if $X \to Y \to Z$ almost split, then $\tau Z = X$.
Objective

Question

1. How to decide a component of Γ_A is standard?

2. Are there new types of standard components?

3. We consider these problems for components with a section.
Objective

Question

1. How to decide a component of $\Gamma_{\mathcal{A}}$ is standard?
2. Are there new types of standard components?
3. We consider these problems for components with a section.
Let \((\Gamma, \tau)\) be connected translation quiver.
Let \((\Gamma, \tau)\) be connected translation quiver.

Definition

A connected full subquiver \(\Delta\) of \(\Gamma\) is *section* if

1. \(\Delta\) contains no oriented cycle,
2. \(\Delta\) meets each \(\tau\)-orbit in \(\Gamma\) exactly once,
3. \(\Delta\) is convex in \(\Gamma\).
Let \((\Gamma, \tau)\) be connected translation quiver.

Definition

A connected full subquiver \(\Delta\) of \(\Gamma\) is *section* if

1. \(\Delta\) contains no oriented cycle,
2. \(\Delta\) meets each \(\tau\)-orbit in \(\Gamma\) exactly once,
3. \(\Delta\) is convex in \(\Gamma\).
Let \((\Gamma, \tau)\) be connected translation quiver.

Definition

A connected full subquiver \(\Delta\) of \(\Gamma\) is *section* if

1. \(\Delta\) contains no oriented cycle,
2. \(\Delta\) meets each \(\tau\)-orbit in \(\Gamma\) exactly once,
Let \((\Gamma, \tau)\) be connected translation quiver.

Definition

A connected full subquiver \(\Delta\) of \(\Gamma\) is *section* if:

1. \(\Delta\) contains no oriented cycle,
2. \(\Delta\) meets each \(\tau\)-orbit in \(\Gamma\) exactly once,
3. \(\Delta\) is convex in \(\Gamma\).
Example

Consider a \textit{finite wing} as follows:
Consider a *finite wing* as follows:
Consider a *finite wing* as follows:

The two longest paths are sections.
Let Δ be acyclic quiver.
Let Δ be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.
Let Δ be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Remark

For $i \in \mathbb{Z}$, the subquiver (Δ, i) is section of $\mathbb{Z}\Delta$.
Let Δ be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Remark

For $i \in \mathbb{Z}$, the subquiver (Δ, i) is section of $\mathbb{Z}\Delta$.

Notation

- $\mathbb{N}\Delta = \langle (x, i) \mid x \in \Delta_0, i \in \mathbb{N} \rangle \subseteq \mathbb{Z}\Delta$.
Let Δ be acyclic quiver.

Construct translation quiver $\mathbb{Z}\Delta$ in canonical way.

Remark

For $i \in \mathbb{Z}$, the subquiver (Δ, i) is section of $\mathbb{Z}\Delta$.

Notation

- $\mathbb{N}\Delta = \langle (x, i) \mid x \in \Delta_0, i \in \mathbb{N} \rangle \subseteq \mathbb{Z}\Delta$.
- $\mathbb{N}^-\Delta = \langle (x, -i) \mid x \in \Delta_0, i \in \mathbb{N} \rangle \subseteq \mathbb{Z}\Delta$.
The translation quiver $\mathbb{Z}A_\infty$ is as follows:

\[
\begin{array}{c}
\cdots \circ \cdots \\
\downarrow \\
\circ \\
\downarrow \\
\cdots \circ \cdots
\end{array}
\]
If \(A_\infty^+ \) denotes a right infinite path

\[
\circ \rightarrow \circ \rightarrow \cdots \rightarrow \circ \rightarrow \cdots,
\]
If A_∞^+ denotes a right infinite path

$$
\circ \rightarrow \circ \rightarrow \cdots \rightarrow \circ \rightarrow \cdots
$$

then $N A_{\infty}^+$ is follows:

```
\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots
```

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]

\[\circ \longleftarrow \cdots \longleftarrow \circ \longleftarrow \cdots \]
Example

If \(\mathbb{A}_{\infty} \) denotes a left infinite path

\[\cdots \rightarrow \circ \rightarrow \circ \rightarrow \cdots \rightarrow \circ \rightarrow \circ, \]
Example

If \mathbb{A}_∞^- denotes a left infinite path

\[\cdots \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \cdots \rightarrow \bigcirc \rightarrow \bigcirc, \]

then $\mathbb{N}^- \mathbb{A}_\infty^-$ is as follows:

\[\cdots \bigcirc \leftarrow \cdots \bigcirc \leftarrow \bigcirc \leftarrow \cdots \]
Let Γ be component of Γ_A with a section Δ.

Properties of components with sections

Let Γ be component of Γ_A with a section Δ.

Proposition

1. Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}$, $X \in \Delta$.

\[\Delta^+ = \langle \tau^{-n} X | n \rangle_{\mathbb{N}}, X \in \Delta \]

\[\Delta^- = \langle \tau^n X | n \rangle_{\mathbb{N}}, X \in \Delta \]
Properties of components with sections

Let Γ be component of Γ_A with a section Δ.

Proposition

1. *Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}$, $X \in \Delta$.*

2. *Γ embeds $\mathbb{Z}\Delta$, by means of $\tau^n x \mapsto (-n, x)$.***
Let Γ be component of $\Gamma_{\mathcal{A}}$ with a section Δ.

Proposition

1. Each object in Γ uniquely written as $\tau^n X$ with $n \in \mathbb{Z}$, $X \in \Delta$.
2. Γ embeds $\mathbb{Z}\Delta$, by means of $\tau^n x \mapsto (-n, x)$.

Notation

1. $\Delta^+ = < \tau^{-n} X \mid n > 0, X \in \Delta > \subseteq \Gamma$.
Properties of components with sections

Let Γ be component of Γ_A with a section Δ.

Proposition

1. Each object in Γ uniquely written as τ^nX with $n \in \mathbb{Z}$, $X \in \Delta$.
2. Γ embeds $\mathbb{Z}\Delta$, by means of $\tau^nX \mapsto (-n, x)$.

Notation

1. $\Delta^+ = \langle \tau^{-n}X \mid n > 0, X \in \Delta \rangle \subseteq \Gamma$.
2. $\Delta^- = \langle \tau^nX \mid n > 0, X \in \Delta \rangle \subseteq \Gamma$.
Let Γ be component of Γ_A.

Γ is stable if $\tau X, \tau - X \in \Gamma$, for any $X \in \Gamma$.

Γ is τ-periodic if every $X \in \Gamma$ is τ-periodic.

Theorem: If Γ is stable, then Γ is τ-periodic or $\Gamma \simeq \mathbb{Z} \Delta$ with Δ acyclic quiver.
Let Γ be component of Γ_A.

Γ is \textit{stable} if $\tau X, \tau^- X \in \Gamma$, for any $X \in \Gamma$.

Γ is \textit{\tau-periodic} if every $X \in \Gamma$ is τ-periodic.

Theorem
If Γ is stable, then Γ is τ-periodic or $\Gamma \cong \mathbb{Z}^\Delta$ with Δ acyclic quiver.
Let Γ be component of Γ_A.

2. Γ is \textit{stable} if $\tau X, \tau^{-1} X \in \Gamma$, for any $X \in \Gamma$.

3. Γ is τ-\textit{periodic} if every $X \in \Gamma$ is τ-periodic.

Theorem

If Γ is stable, then Γ is τ-periodic or $\Gamma \cong \mathbb{Z}^\Delta$ with Δ acyclic quiver.
1. Let Γ be component of Γ_A.
2. Γ is stable if $\tau X, \tau^- X \in \Gamma$, for any $X \in \Gamma$.
3. Γ is τ-periodic if every $X \in \Gamma$ is τ-periodic.

Theorem

If Γ is stable, then Γ is τ-periodic or $\Gamma \cong \mathbb{Z} \Delta$ with Δ acyclic quiver.
Let Γ be component of Γ_A with a section Δ.
Let Γ be component of Γ_A with a section Δ.

Theorem

If Δ^+ no left-∞ path and Δ^- no right-∞ path, then Γ is standard \iff

1. $\text{add}(\Delta) \sim = k \Delta$
2. $\text{Hom}_A(\Delta^+, \Delta \cup \Delta^-) = 0$
3. $\text{Hom}_A(\Delta, \Delta^-) = 0$
General criterion for standardness

Let Γ be component of Γ_A with a section Δ.

Theorem

If Δ^+ no left-∞ path and Δ^- no right-∞ path, then Γ is standard \iff

1. $\text{add}(\Delta) \cong k\Delta$, where k is a positive integer.
Let Γ be component of Γ_A with a section Δ.

Theorem

If Δ^+ no left-∞ path and Δ^- no right-∞ path, then Γ is standard \iff

1. $\text{add}(\Delta) \cong k\Delta$,
2. $\text{Hom}_A(\Delta^+, \Delta \cup \Delta^-) = 0$,

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick)
Let Γ be component of Γ_A with a section Δ.

Theorem

If Δ^+ no left-∞ path and Δ^- no right-∞ path, then Γ is standard \iff

1. $\text{add}(\Delta) \cong k\Delta$,
2. $\text{Hom}_A(\Delta^+, \Delta \cup \Delta^-) = 0$,
3. $\text{Hom}_A(\Delta, \Delta^-) = 0$.
Theorem

Let A be abelian or triangulated.
Theorem

Let A be abelian or triangulated.
Let Γ be component of Γ_A.

Suppose Δ is section of Γ without infinite paths such that any object in Δ admits sink morphism and source morphism in A.

Then Γ is standard $\iff \text{Hom}_A(\Delta^+, \Delta^-) = 0$.
Theorem

Let \mathcal{A} be abelian or triangulated.
Let Γ be component of $\Gamma_{\mathcal{A}}$.
Suppose Δ is section of Γ without infinite paths such that any object in Δ admits sink morphism and source morphism in \mathcal{A}.

Then Γ is standard $\iff \text{Hom}_{\mathcal{A}}(\Delta^+, \Delta^-) = 0$.
Theorem

Let \mathcal{A} be abelian or triangulated.
Let Γ be component of $\Gamma_{\mathcal{A}}$.
Suppose Δ is section of Γ without infinite paths such that any object in Δ admits sink morphism and source morphism in \mathcal{A}.

Then Γ is standard $\iff \text{Hom}_{\mathcal{A}}(\Delta^+, \Delta^-) = 0$.

An object X is \textit{brick} if $\text{End}_A(X) \cong k$.
1. An object X is *brick* if $\text{End}_A(X) \cong k$.

2. Two objects X, Y are *orthogonal* if $\text{Hom}_A(X, Y) = 0$ and $\text{Hom}_A(Y, X) = 0$.
An object X is \textit{brick} if $\text{End}_A(X) \cong k$.

Two objects X, Y are \textit{orthogonal} if $\text{Hom}_A(X, Y) = 0$ and $\text{Hom}_A(Y, X) = 0$.

\textbf{Theorem}

\textit{Let Γ be component of Γ_A.}
1. An object X is \textit{brick} if $\text{End}_A(X) \cong k$.

2. Two objects X, Y are \textit{orthogonal} if $\text{Hom}_A(X, Y) = 0$ and $\text{Hom}_A(Y, X) = 0$.

\textbf{Theorem}

Let Γ be component of Γ_A.

If Γ is wing or $\mathbb{Z}A_\infty$, NA_∞^+, $N^-A_\infty^-$, then
An object X is \textit{brick} if $\text{End}_A(X) \cong k$.

Two objects X, Y are \textit{orthogonal} if

$\text{Hom}_A(X, Y) = 0$ and $\text{Hom}_A(Y, X) = 0$.

\textbf{Theorem}

Let Γ be component of Γ_A.

If Γ is wing or \mathbb{ZA}_∞, \mathbb{NA}^+_∞, $\mathbb{N^-A^-}_\infty$, then

Γ is standard \iff the quasi-simple objects are orthogonal bricks.
Setting

Q: connected quiver, which is locally finite, and interval-finite (for all $x, y \in Q_0$, the number of $x \to y$ is finite).

P_x: indecomposable projective representation of Q at x.

I_x: indecomposable injective representation of Q at x.

$\text{proj}(Q)$: additive category of the P_x, $x \in Q_0$.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt category
Setting

Q: connected quiver, which is

- locally finite, and
Setting

Q: connected quiver, which is

- locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).
Setting

Q: connected quiver, which is

- locally finite, and
- interval-finite ($\forall x, y \in Q_0$, number of $x \rightsquigarrow y$ is finite).

P_x: indec projective representation of Q at x.

I_x: indec injective representation of Q at x.

$\text{proj} (Q)$: additive category of the P_x, $x \in Q_0$.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick)

Standard Auslander-Reiten components of a Krull-Schmidt category
Setting

\(Q \): connected quiver, which is

- locally finite, and
- interval-finite (\(\forall x, y \in Q_0 \), number of \(x \rightsquigarrow y \) is finite).

\(P_x \): indec projective representation of \(Q \) at \(x \).

\(I_x \): indec. injective representation of \(Q \) at \(x \).
Setting

\(Q\): connected quiver, which is
- locally finite, and
- interval-finite (\(\forall x, y \in Q_0, \text{ number of } x \rightsquigarrow y \text{ is finite}\)).

\(P_x\): indec projective representation of \(Q\) at \(x\).
\(I_x\): indec. injective representation of \(Q\) at \(x\).
\(\text{proj}(Q)\): additive category of the \(P_x, x \in Q_0\).
A representation M of Q is \textit{finitely presented} if

\[0 \to P_1 \to P_0 \to M \to 0, \]

where $P_0, P_1 \in \text{proj}(Q)$.
A representation M of Q is \emph{finitely presented} if there exists a projective resolution

$$0 \to P_1 \to P_0 \to M \to 0,$$

where $P_0, P_1 \in \text{proj}(Q)$.
A representation M of Q is **finitely presented** if there exists a projective resolution:

$$0 \to P_1 \to P_0 \to M \to 0,$$

where $P_0, P_1 \in \text{proj}(Q)$.
rep^{+}(Q): finitely presented representations of Q.
rep^+(Q): finitely presented representations of Q.

Proposition

rep^+(Q) is Hom-finite, hereditary, abelian.
A component Γ of $\Gamma_{\text{rep}^+(Q)}$ is called

1. **preprojective** if Γ contains some of the P_x.

2. **preinjective** if Γ contains some of the I_x.

3. **regular** if Γ contains none of the P_x, I_x.
Classes of AR-components

Definition

A component Γ of $\Gamma_{\text{rep}}^+(Q)$ is called

1. **preprojective** if Γ contains some of the P_x.
2. **preinjective** if Γ contains some of the I_x.
Classes of AR-components

Definition

A component \(\Gamma \) of \(\Gamma_{\text{rep}^+}(Q) \) is called

1. **preprojective** if \(\Gamma \) contains some of the \(P_x \).
2. **preinjective** if \(\Gamma \) contains some of the \(I_x \).
3. **regular** if \(\Gamma \) contains none of the \(P_x, I_x \).
Theorem

Let Q connected, strongly locally finite.
Theorem

Let Q connected, strongly locally finite.

1. The unique preprojective component of $\Gamma_{\text{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{-1}$.

Proof.

The $P_{\mathbf{x}}, \mathbf{x} \in Q_0$, form subquiver $\Delta \cong Q^{-1}$.

$\exists!$ preprojective component Δ of which Δ is section.

$\Delta^- = \emptyset$ and Δ^+ no left-∞ path.

Add (Δ) $\cong kQ^{-1}$ and $\text{Hom}(\Delta^+, \Delta) = 0$.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick) Standard Auslander-Reiten components of a Krull-Schmidt category
Theorem

Let Q connected, strongly locally finite.

1. The unique preprojective component of $\Gamma_{\text{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^\text{op}$.

2. The preinjective components of $\Gamma_{\text{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^{-}Q^\text{op}$.
Preprojective component and preinjective components

Theorem

Let Q connected, strongly locally finite.

1. The unique preprojective component of $\Gamma_{\text{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^\text{op}$.

2. The preinjective components of $\Gamma_{\text{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^\text{−}Q^\text{op}$.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^\text{op}$.
Theorem

Let Q connected, strongly locally finite.

1. The unique preprojective component of $\Gamma_{\text{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^\text{op}$.

2. The preinjective components of $\Gamma_{\text{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^{-}Q^\text{op}$.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^\text{op}$.

$\exists!$ preprojective component \mathcal{P} of which Δ is section.
Theorem

Let Q connected, strongly locally finite.

1. The unique preprojective component of $\Gamma_{\text{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\text{op}}$.

2. The preinjective components of $\Gamma_{\text{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^{-}Q^{\text{op}}$.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{\text{op}}$.

$\exists!$ preprojective component \mathcal{P} of which Δ is section.

$\Delta^- = \emptyset$ and Δ^+ no left-∞ path.
Theorem

Let Q connected, strongly locally finite.

1. The unique preprojective component of $\Gamma_{\text{rep}^+(Q)}$ is standard and embeds in $\mathbb{N}Q^{\text{op}}$.

2. The preinjective components of $\Gamma_{\text{rep}^+(Q)}$ are all standard, and embed in $\mathbb{N}^{-}Q^{\text{op}}$.

Proof. The $P_x, x \in Q_0$, form subquiver $\Delta \cong Q^{\text{op}}$.

$\exists!$ preprojective component P of which Δ is section.

$\Delta^{-} = \emptyset$ and Δ^{+} no left-∞ path.

$\text{add}(\Delta) \cong kQ^{\text{op}}$ and $\text{Hom}(\Delta^{+}, \Delta) = 0$.
Theorem

Let Q connected, infinite, strongly locally finite.
Theorem

Let Q connected, infinite, strongly locally finite.

1. The regular components of $\Gamma_{\text{rep}^+(Q)}$ are wings or $\mathbb{Z}A_\infty, NA_\infty^+, NA_\infty^-$.
Theorem

Let Q connected, infinite, strongly locally finite.

1. The regular components of $\Gamma_{\text{rep}^+}(Q)$ are wings or $\mathbb{Z}A_\infty, NA_\infty^+, NA_\infty^-.$

2. The regular components are all standard $\iff Q$ of infinite Dynkin types $A_\infty, A_\infty^+, D_\infty.$
Theorem

Let Q be infinite Dynkin quiver.
Infinite Dynkin case

Theorem

Let Q be infinite Dynkin quiver.

1. $\Gamma_{\text{rep}^+}(Q)$ has at most four components, at most two regular, all standard.
Let Q be infinite Dynkin quiver.

1. $\Gamma_{\text{rep}^+(Q)}$ has at most four components, at most two regular, all standard.

2. Wings, $\mathbb{Z}A_\infty$, NA_∞^+, $N^-A_\infty^-$ all appear in this setting.
Let Q be connected, strongly locally finite.
The derived category $D^b(\text{rep}^+(Q))$

1. Let Q be connected, strongly locally finite.
2. $D^b(\text{rep}^+(Q))$ is Hom-finite, Krull-Schmidt.
Let Q be connected, strongly locally finite.

2. $\mathcal{D}^b(\text{rep}^+(Q))$ is Hom-finite, Krull-Schmidt.

3. $\Gamma_{\mathcal{D}^b(\text{rep}^+(Q))}$ has a connecting component C_Q, containing
The derived category $D^b(\text{rep}^+(Q))$

1. Let Q be connected, strongly locally finite.
2. $D^b(\text{rep}^+(Q))$ is Hom-finite, Krull-Schmidt.
3. $\Gamma_{D^b(\text{rep}^+(Q))}$ has a connecting component C_Q, containing
 - the preprojective component of $\Gamma_{\text{rep}^+(Q)}$.

Shiping Liu (Sherbrooke) Charles Paquette (New Brunswick)
1. Let Q be connected, strongly locally finite.

2. $D^b(\text{rep}^+(Q))$ is Hom-finite, Krull-Schmidt.

3. $\Gamma_{D^b(\text{rep}^+(Q))}$ has a connecting component \mathcal{C}_Q, containing
 - the preprojective component of $\Gamma_{\text{rep}^+(Q)}$.
 - shift by -1 of all preinjective components of $\Gamma_{\text{rep}^+(Q)}$.
Theorem

Let Q be connected, strongly locally finite.
Standard components in $D^b(\text{rep}^+(Q))$

Theorem

Let Q be connected, strongly locally finite.

1. C_Q is standard and embeds in $\mathbb{Z}Q^{\text{op}}$.
Theorem

Let Q be connected, strongly locally finite.

1. C_Q is standard and embeds in $\mathbb{Z}Q^{\text{op}}$.
2. Q no infinite path $\Rightarrow C_Q \cong \mathbb{Z}Q^{\text{op}}$.
Standard components in $D^b(\text{rep}^+(Q))$

Theorem

Let Q be connected, strongly locally finite.

1. \mathcal{C}_Q is standard and embeds in $\mathbb{Z}Q^{\text{op}}$.
2. Q no infinite path $\Rightarrow \mathcal{C}_Q \cong \mathbb{Z}Q^{\text{op}}$.
3. Q of infinite Dynkin type $\Rightarrow \Gamma_{D^b(\text{rep}^+(Q))}$ has at most 3 components up to shift, all standard.
Let A be finite dimensional k-algebra.
Let A be finite dimensional k-algebra.
Let Γ be component of $\Gamma_{\text{mod}A}$.
Let A be finite dimensional k-algebra.
Let Γ be component of $\Gamma_{\text{mod}A}$.

Theorem

1. If Γ has a section Δ, then it is standard
 \[\iff \text{Hom}_A(X, \tau Y) = 0 \quad \text{for} \quad X, Y \in \Delta. \]
Let A be finite dimensional k-algebra. Let Γ be component of $\Gamma_{\text{mod}A}$.

Theorem

1. If Γ has a section Δ, then it is standard $\iff \text{Hom}_A(X, \tau Y) = 0$ for $X, Y \in \Delta$.
2. Γ is standard with a section $\iff \Gamma$ is a connecting component of AR-quiver of a tilted factor algebra of A.