Invariant Theory of AS-Regular Algebras: A Survey

Ellen Kirkman

Maurice Auslander Distinguished Lectures and International Conference
April 20, 2013
Collaborators

• Jacque Alev
• Kenneth Chan
• James Kuzmanovich
• Chelsea Walton
• James Zhang
Invariants under S_n
Permutations of x_1, \cdots, x_n.

(Painter: Christian Albrecht Jensen) (Wikipedia)
Gauss’ Theorem

The subring of invariants under S_n is a polynomial ring

$$k[x_1, \cdots, x_n]^{S_n} = k[\sigma_1, \cdots, \sigma_n]$$

where σ_ℓ are the n elementary symmetric functions for $\ell = 1, \ldots, n$, or the n power sums:

$$P_\ell = x_1^\ell + \cdots + x_i^\ell + \cdots + x_n^\ell$$

Question: When is $k[x_1, \cdots, x_n]^G$ a polynomial ring? (G a finite group of graded automorphisms.)
Shephard-Todd-Chevalley Theorem

Let k be a field of characteristic zero.

Theorem (1954). The ring of invariants $k[x_1, \cdots, x_n]^G$ under a finite group G is a polynomial ring if and only if G is generated by reflections.

A linear map g on V is called a **reflection** of V if all but one of the eigenvalues of g are 1, i.e. $\dim V^g = \dim V - 1$.

Example: Transposition permutation matrices are reflections, and S_n is generated by reflections.
When is $k[x_1, x_2, \ldots, x_n]^G$:

- A Gorenstein ring? Watanabe’s Theorem (1974), Stanley’s Theorem (1978) ($H_{A^G}(t^{-1}) = \pm t^m H_{A^G}(t)$).

Example. Let $g = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ act on $k[x, y]$

$$k[x, y]^g = k\langle x^2, xy, y^2 \rangle \cong \frac{k[a, b, c]}{\langle b^2 - ac \rangle}, \quad H(t) = \frac{1 + t^2}{(1 - t^2)^2}$$

Noncommutative Generalizations

Replace $k[x_1, \cdots, x_n]$ by a connected graded noetherian Artin-Schelter regular algebra A. Let $k = \mathbb{C}$.

G a group of graded automorphisms of A. Not all linear maps act on A.

Question: Under what conditions on G is A^G Artin-Schelter regular, or AS-Gorenstein, or a “complete intersection”?

More generally, consider finite dimensional (semisimple) Hopf algebras H acting on A.
Noetherian connected graded algebra A is Artin-Schelter Gorenstein if:

- A has graded injective dimension $n < \infty$ on the left and on the right,
- $\Ext^i_A(k, A) = \Ext^i_{A^\op}(k, A) = 0$ for all $i \neq n$, and
- $\Ext^n_A(k, A) \cong \Ext^n_{A^\op}(k, A) \cong k(\ell)$ for some ℓ.

If in addition,

- A has finite (graded) global dimension, and
- A has finite Gelfand-Kirillov dimension,

then A is called Artin-Schelter regular of dimension n.

An Artin-Schelter regular graded domain A is called a quantum polynomial ring of dimension n if $H_A(t) = (1 - t)^{-n}$.

\[H_A(t) = (1 - t)^{-n} \]
Graded automorphisms of $\mathbb{C}_q[x, y]$

If $q \neq \pm 1$ there are only diagonal automorphisms:

$$g = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}.$$

When $q = \pm 1$ there also are automorphisms of the form:

$$g = \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}:

yx = qxy

\begin{align*}
g(yx) &= g(qxy) \\
axby &= qbyax \\
abxy &= q^2 abxy
\end{align*}

q^2 = 1.
Noncommutative Gauss’ Theorem?

Example: \(S_2 = \langle g \rangle \), for \(g = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \), acts on \(A = \mathbb{C}_{-1}[x, y] \) and \(A^{S_2} \) is generated by

\[
P_1 = x + y \text{ and } P_2 = x^3 + y^3
\]

\((x^2 + y^2 = (x + y)^2 \) and \(g \cdot xy = yx = -xy \) so no generators in degree 2). The generators are NOT algebraically independent. \(A^{S_2} \) is NOT AS-regular (but it is a hyperplane in an AS-regular algebra).

The transposition \((1, 2)\) is NOT a “reflection”.
Definition of “reflection”: Want A^G AS-regular

All but one eigenvalue of g is 1 \sim

The trace function of g acting on A of dimension n has a pole of order $n - 1$ at $t = 1$, where

$$\text{Tr}_A(g, t) = \sum_{k=0}^{\infty} \text{trace}(g|A_k)t^k = \frac{1}{(1 - t)^{n-1}q(t)}$$ for $q(1) \neq 0.$

Conjecture: A^G is AS-regular if and only if G is generated by “reflections”.
Examples $G = \langle g \rangle$ on $A = \mathbb{C}_{-1}[x, y]$ ($yx = -xy$):

(a) $g = \begin{bmatrix} \epsilon_n & 0 \\ 0 & 1 \end{bmatrix}$, $Tr(g, t) = \frac{1}{(1 - t)(1 - \epsilon_n t)}$, A^G AS-regular.

(b) $g = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $Tr(g, t) = \frac{1}{1 + t^2}$, A^G not AS-regular.

(c) $g = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, $Tr(g, t) = \frac{1}{(1 - t)(1 + t)}$, A^G AS-regular.

$A^G = \mathbb{C}[xy, x^2 + y^2]$.

For $A = \mathbb{C}_{q_{ij}}[x_1, \cdots, x_n]$ the groups generated by “reflections” are exactly the groups whose fixed rings are AS-regular rings.
What are the reflection groups?

For quantum polynomial rings they must be generated by classical reflections and “mystic” reflections.

Example: The “binary dihedral groups” of order 4ℓ generated by

$$g_1 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \text{ and } g_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

for λ a primitive 2ℓth root of unity, acts on $A = \mathbb{C}_{-1}[x, y]$.

$$A^G = \mathbb{C}[xy, x^{2\ell} + y^{2\ell}]$$
Molien’s Theorem: Using trace functions

Jørgensen-Zhang: \[H^G_A(t) = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}_A(g, t) \]

Example (c) \(A = \mathbb{C}_1[x, y] \) and \(g = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \)

\(\sigma_1 = x^2 + y^2, \sigma_2 = xy \) and \(A^G \cong \mathbb{C}[^0_1, \sigma_2] \).

\[H^G_A(t) = \frac{1}{4(1-t)^2} + \frac{2}{4(1-t^2)} + \frac{1}{4(1+t)^2} = \frac{1}{(1-t^2)^2}. \]
Theorem (Chevalley-Serre). If G acts on $A = \mathbb{C}[x_1, \ldots, x_n]$ with \(\theta_i \) a set of n homogeneous algebraically independent G-invariants of $\mathbb{C}[x_1, \ldots, x_n]$, and if $I = \langle \theta_1, \ldots, \theta_n \rangle$, then A/I, as a G-module, is isomorphic to t copies of the regular representation of G, where

\[
t = \prod_i \frac{\deg(\theta_i)}{|G|}
\]

(when G is generated by reflections then $t = 1$).
Theorem. Let A be AS-regular of GKdim $A = n$ with Hilbert series $1/((1 - t)^n p(t))$. If there are n homogeneous G-invariant elements θ_i with θ_i normal in A and θ_i regular on $A/\langle \theta_1, \ldots, \theta_{i-1} \rangle$, then for $I = \langle \theta_1, \ldots, \theta_n \rangle$ as a G-module, A/I is isomorphic to t copies of the regular representation, where

$$t = \prod_i \frac{\deg(\theta_i)}{|G|(p(1))}$$

(when G is generated by reflections then $t = 1$).
Example 1. Binary dihedral groups on \(A = \mathbb{C}_-1[x, y] \) with

\[
A^G = \mathbb{C}[xy, x^{2\ell} + y^{2\ell}].
\]

\(\mathbb{C}_-1[x, y]/(xy, x^{2\ell} + y^{2\ell}) \) is one copy of regular representation of \(G \).

Example 2. \(S_n \) acting on \(A = \mathbb{C}_-1[x_1, \ldots, x_n] \) with \(\theta_i \) the ith symmetric function in the \(\{x_i^2\} \) – e.g. \(n=2 \)

\(\mathbb{C}_-1[x, y]/\langle x^2 + y^2, x^2 y^2 \rangle \) is \((2 \cdot 4)/2 = 4 \) copies of the regular representation of \(S_2 \).
Let \((H, \Delta, \epsilon, S)\) be a Hopf algebra and \(A\) be a Hopf-module algebra so
\[
h \cdot (ab) = \sum (h_1 \cdot a)(h_2 \cdot b) \quad \text{and} \quad h \cdot 1_A = \epsilon(h)1_A
\]
for all \(h \in H\), and all \(a, b \in A\).
The invariants of \(H\) on \(A\) are
\[
A^H := \{a \in A \mid h \cdot a = \epsilon(h)a \text{ for all } h \in H\}.
\]
When \(H = k[G]\) and \(\Delta(g) = g \otimes g\) then \(g \cdot (ab) = g(a)g(b)\).
Etingof and Walton (2013): Let H be a finite dimensional semisimple Hopf algebra over a field of characteristic zero, and let A be a commutative domain. If A is an H-module algebra for an inner faithful action of H on A, then H is a group algebra.

Question: Under what conditions on H is A^H an AS-regular algebra?

When is H a “quantum reflection group”?
Kac/Masuoka’s 8-dimensional semisimple Hopf algebra

H_8 is generated by x, y, z with the following relations:

\[
x^2 = y^2 = 1, \quad xy = yx, \quad zx = yz,
\]

\[
zy = xz, \quad z^2 = \frac{1}{2}(1 + x + y - xy).
\]

\[
\Delta(x) = x \otimes x, \quad \Delta(y) = y \otimes y,
\]

\[
\Delta(z) = \frac{1}{2}(1 \otimes 1 + 1 \otimes x + y \otimes 1 - y \otimes x)(z \otimes z),
\]

\[
\epsilon(x) = \epsilon(y) = \epsilon(z) = 1, \quad S(x) = x^{-1}, \quad S(y) = y^{-1}, \quad S(z) = z.
\]
\(H_8 \) has a unique irreducible 2-dimensional representation on \(\mathbb{C}u + \mathbb{C}v \) given by

\[
\begin{align*}
x & \mapsto \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \\
y & \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\
z & \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
\end{align*}
\]

Example 1: Let \(A = \mathbb{C}\langle u, v \rangle/\langle u^2 - v^2 \rangle \).
\(A^H = \mathbb{C}[u^2, (uv)^2 - (vu)^2] \), a commutative polynomial ring.
\(H \) is “quantum reflection group” for \(A \).

Example 2: Let \(A = \mathbb{C}\langle u, v \rangle/\langle vu - iuv \rangle \).
\(A^H = \mathbb{C}[u^2v^2, u^2 + v^2] \), a commutative polynomial ring.
\(H \) is “quantum reflection group” for \(A \).
H not semisimple

The Sweedler algebra $H(-1)$ generated by g and x

\[g^2 = 1, \quad x^2 = 0, \quad xg = -gx \]

\[\Delta(g) = g \otimes g \quad \Delta(x) = g \otimes x + x \otimes 1, \]

\[\epsilon(g) = 1, \epsilon(x) = 0 \quad S(g) = g, \quad S(x) = -gx. \]

Then $H(-1)$ acts on $k[u, v]$ as

\[x \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad g \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

\[k[u, v]^{H(-1)} = k[u, v^2]. \]
Questions:

When is A^H regular?

Are the trace functions useful in understanding when H is a “quantum reflection group”? What are the elements whose traces determine if H is a “quantum reflection group”?
Gorenstein Invariant Subrings
Watanabe’s Theorem (1974):

If G is a finite subgroup of $SL_n(k)$ then $k[x_1, \cdots, x_n]^G$ is Gorenstein.

If A is AS-regular, when is A^G AS-Gorenstein?

What is the generalization of determinant $= 1$?
Trace Functions and Homological Determinant

When A is AS-regular of dimension n, then when the trace is written as a Laurent series in t^{-1}

$$Tr_A(g, t) = (-1)^n(hdet g)^{-1} t^{-\ell} + \text{higher terms}$$

(Jing-Zhang)

Generalized Watanabe’s Theorem (Jørgensen-Zhang): A^G is AS-Gorenstein when all elements of G have homological determinant 1.
If \(g \) is a 2-cycle and \(A = \mathbb{C}_{-1}[x_1 \ldots, x_n] \) then

\[
Tr_A(g, t) = \frac{1}{(1 + t^2)(1 - t)^{n-2}}
\]

\[
= (-1)^n \frac{1}{t^n} + \text{higher terms}
\]

so \(\text{hdet } g = 1 \), and for ALL groups \(G \) of \(n \times n \) permutation matrices, \(A^G \) is AS-Gorenstein. Not true for commutative polynomial ring – e.g.

\[
\mathbb{C}[x_1, x_2, x_3, x_4]^{\langle(1,2,3,4)\rangle}
\]

is not Gorenstein, while

\[
\mathbb{C}_{-1}[x_1, x_2, x_3, x_4]^{\langle(1,2,3,4)\rangle}
\]

is AS-Gorenstein.
Binary Polyhedral Groups

Felix Klein (1884)

Classified the finite subgroups of $SL_2(k)$, for k an algebraically closed field of char 0, and calculated invariants $k[u, v]^G$.
Actions of Binary Polyhedral Groups on $k[u, v]$

G a finite subgroup of $SL_2(k)$

$k[u, v]^G$ is a hypersurface ring

$k[u, v]^G \cong k[x, y, z]/(f(x, y, z))$, a “Kleinian singularity”, of type A,D or E (corresponding to the type of McKay quiver of the irreducible representations of the group G).
The Homological Determinant of a Hopf Action

Since $\text{Ext}_A^n(k, A)$ is 1-dimensional, the left H-action on $\text{Ext}_A^n(k, A)$ defines an algebra map $\eta' : H \to k$ such that $h \cdot e = \eta'(h)e$ for all $h \in H$.

The homological determinant hdet is equal to $\eta' \circ S$, where S is the antipode of H.

The homological determinant is trivial if $\text{hdet} = \epsilon$.
Find all H, a finite dimensional Hopf algebra acting on A, an AS-regular algebra of dimension 2:

$$k_J[u, v] := k\langle u, v \rangle/(vu - uv - u^2)$$

or

$$k_q[u, v] := k\langle u, v \rangle/(vu - quv),$$

with trivial homological determinant, so that A is an H module algebra, the action is inner faithful and preserves the grading.

Use the classification of finite Hopf quotients of the coordinate Hopf algebra $O_q(SL_2(k))$ (Bichon-Natale, Müller, Stefan).
<table>
<thead>
<tr>
<th>AS reg alg A gldim 2</th>
<th>f.d. Hopf algebra(s) H acting on A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k[u, v]$</td>
<td>$k\tilde{\Gamma}$</td>
</tr>
<tr>
<td>$k_{-1}[u, v]$</td>
<td>kC_n for $n \geq 2$; kD_{2n}; $D(\tilde{\Gamma})^\circ$ for $\tilde{\Gamma}$ nonabelian</td>
</tr>
<tr>
<td>$k_q[u, v]$, q root of 1, $q^2 \neq 1$ if U non-simple</td>
<td>kC_n for $n \geq 3$; $(T_{q,\alpha,n})^\circ$; $1 \rightarrow (k\tilde{\Gamma})^\circ \rightarrow H^\circ \rightarrow u_q(sI_2)^\circ \rightarrow 1$; $1 \rightarrow (k\Gamma)^\circ \rightarrow H^\circ \rightarrow u_{2,q}(sI_2)^\circ \rightarrow 1$;</td>
</tr>
<tr>
<td>$k_q[u, v]$, q root of 1, $q^2 \neq 1$ if U non-simple</td>
<td>$1 \rightarrow (k\Gamma)^\circ \rightarrow H^\circ \rightarrow u_{2,q}(sI_2)^\circ \rightarrow 1$ $1 \rightarrow (k\Gamma)^\circ \rightarrow H^\circ \rightarrow \frac{u_{2,q}(sI_2)^\circ}{(e_{12}-e_{21}e_{11}^2)} \rightarrow 1$</td>
</tr>
<tr>
<td>$k_q[u, v]$, q root of 1, $q^2 = 1$ if U simple, $o(q)$ odd, and $q^4 \neq 1$</td>
<td></td>
</tr>
<tr>
<td>$k_q[u, v]$, q not root 1</td>
<td>kC_n, $n \geq 2$</td>
</tr>
<tr>
<td>$k_J[u, v]$</td>
<td>kC_2</td>
</tr>
</tbody>
</table>
Commutative Complete Intersections

Theorem (Gulliksen) (1971):
Let A be a connected graded noetherian commutative algebra. Then the following are equivalent.

1. A is isomorphic to $k[x_1, x_2, \ldots, x_n]/(d_1, \ldots, d_m)$ for a homogeneous regular sequence.

2. The Ext-algebra $\text{Ext}_A^*(k, k)$ is noetherian.

3. The Ext-algebra $\text{Ext}_A^*(k, k)$ has finite GK-dimension.
Let A be a connected graded finitely generated algebra.

1. We say A is a *classical complete intersection* if there is a connected graded noetherian AS regular algebra R and a sequence of regular normal homogeneous elements $\{\Omega_1, \cdots, \Omega_n\}$ of positive degree such that A is isomorphic to $R/(\Omega_1, \cdots, \Omega_n)$.

2. We say A is a *complete intersection of noetherian type* if the Ext-algebra $\text{Ext}_A^*(k, k)$ is noetherian.

3. We say A is a *complete intersection of growth type* if the Ext-algebra $\text{Ext}_A^*(k, k)$ has finite Gelfand-Kirillov dimension.

4. We say A is a *weak complete intersection* if the Ext-algebra $\text{Ext}_A^*(k, k)$ has subexponential growth.
Noncommutative case:

Classical C.I. \(\Downarrow \) C.I. of Growth Type \(\implies \) Weak C.I.

C.I. of Noetherian Type \(\Downarrow \)
Noncommutative case:

\[\text{Classical C.I.} \quad \leftarrow \quad \text{C.I. of Noetherian Type} \]

\[\downarrow \quad \uparrow \]

\[\text{C.I. of Growth Type} \quad \rightarrow \quad \text{Weak C.I.} \]

\[\downarrow \]
A^G a complete intersection:

Theorem: (Kac and Watanabe – Gordeev) (1982). If $\mathbb{C}[x_1, \ldots, x_n]^G$ is a complete intersection then G is generated by bi-reflections (all but two eigenvalues are 1).

For an AS-regular algebra A a graded automorphism g is a “bi-reflection” of A if

$$Tr_A(g, t) = \sum_{k=0}^{\infty} \text{trace}(g|A_k)t^k$$

$$= \frac{1}{(1 - t)^{n-2}q(t)},$$

$n = \text{GKdim } A$, and $q(1) \neq 0$.
Example:

\(A^G \) a complete intersection

\[A = \mathbb{C}_{-1}[x, y, z] \] is regular of dimension 3, and

\[
g = \begin{bmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{bmatrix}
\]

acts on it. The eigenvalues of \(g \) are \(-1, i, -i\) so \(g \) is not a bi-reflection of \(A_1 \). However,

\[
\text{Tr}_A(g, t) = 1/((1 + t)^2(1 - t)) = -1/t^3 + \text{higher degree terms}
\]

and \(g \) is a “bi-reflection” with \(\text{hdet } g = 1 \).

\[
A^g \cong k[X, Y, Z, W]/\langle W^2 - (X^2 + 4Y^2)Z \rangle,
\]

a commutative complete intersection.
Invariants A^G

Classical C.I. \quad \qu
Gauss’ Theorem

Invariants of \(\mathbb{C}_{-1}[x_1, \ldots, x_n] \) under the full Symmetric Group \(S_n \):

\(\mathbb{C}_{-1}[x_1, \ldots, x_n]^{S_n} \) and \(\mathbb{C}_{-1}[x_1, \ldots, x_n]^{A_n} \) are classical complete intersections.

Permutations in \(S_n \) are “bi-reflections” if and only if they are 2-cycles or 3-cycles.

Theorem. Let \(A = k_{-1}[x_1, \cdots, x_n] \) and \(G \) be a finite subgroup of permutations of \(\{x_1, \cdots, x_n\} \). If \(G \) is generated by quasi-bireflections then \(A^G \) is a classical complete intersection.

Question: Is the converse true?
Graded Down-up Algebras

\[A(\alpha, \beta), \beta \neq 0: \]

Theorem. Let \(A \) be a down-up algebra with \(\beta \neq 0 \)
\[(y^2x = \alpha yxy + \beta xy^2 \text{ and } yx^2 = \alpha yxy + \beta x^2y) \]
and \(G \) be a finite subgroup of graded automorphisms of \(A \). Then the following are equivalent:

- \(A^G \) is a growth type complete intersection.
- \(A^G \) is cyclotomic Gorenstein and \(G \) is generated by quasi-bireflections.
- \(A^G \) is cyclotomic Gorenstein.

Question: Are these \(A^G \) also classical complete intersections?
Veronese Subrings

For a graded algebra A the rth Veronese $A^{(r)}$ is the subring generated by all monomials of degree r.

If A is AS-Gorenstein of dimension n, then $A^{(r)}$ is AS-Gorenstein if and only if r divides ℓ where $\text{Ext}_A^n(k, A) = k(\ell)$ (Jørgensen-Zhang).

Let $g = \text{diag}(\lambda, \cdots, \lambda)$ for λ a primitive rth root of unity; $G = (g)$ acts on A with $A^{(r)} = A^G$.

If the Hilbert series of A is $(1 - t)^{-n}$ then

$$\text{Tr}_A(g^i, t) = \frac{1}{(1 - \lambda^i t)^n}.$$

For $n \geq 3$ the group $G = (g)$ contains no “bi-reflections”, so $A^G = A^{(r)}$ should not be a complete intersection.
Theorem:
Let A be noetherian connected graded algebra.

Suppose the Hilbert series of A is $(1 - t)^{-n}$. If $r \geq 3$ or $n \geq 3$, then $H_{A^{(r)}}(t)$ is not cyclotomic.
Consequently, $A^{(r)}$ is not a complete intersection of any type.
Auslander’s Theorem

Let G be a finite subgroup of $GL_n(k)$ that contains no reflections, and let $A = k[x_1, \ldots, x_n]$. Then the skew-group ring $A \# G$ is isomorphic to $\operatorname{End}_{A^G}(A)$ as rings.

Question: Does Auslander’s Theorem generalize to our context?