On the Homology of the Ginzburg Algebra

Stephen Hermes
Brandeis University, Waltham, MA

Maurice Auslander Distinguished Lectures
and International Conference
Woodshole, MA

April 23, 2013
Outline:

1. Ginzburg Algebra of a QP
2. Relation with the Preprojective Algebra
3. A_∞-Algebras
4. Application to the Ginzburg Algebra
A quiver with potential (QP for short) is a pair \((Q, W)\) where \(Q\) is a quiver with

- no loops
- no 2-cycles

and \(W\) is a potential on \(Q\), i.e., an element of

\[
HH_0(kQ) = kQ/[kQ, kQ].
\]

Equivalently, \(W\) is a linear combination of cycles of \(Q\) considered up to cyclic equivalence.
The **Ginzburg algebra** $\Gamma_{(Q,W)}$ of a QP (Q, W) is the dga constructed as follows. As a graded algebra, $\Gamma_{(Q,W)} = k\hat{Q}$ where \hat{Q} is the quiver:

1. Start with Q (in degree 0).
2. Add reversed arrows $\alpha^* : j \to i$ (degree -1) for each $\alpha : i \to j$ in Q.
3. Add loops t_i (degree -2) for each vertex i of Q.

Example

\[
\begin{array}{c}
1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \\
\end{array}
\]

\sim

\[
\begin{array}{c}
1 \xrightarrow{\alpha^*} 2 \xrightarrow{\beta^*} 3 \\
\end{array}
\]
The Ginzburg Algebra

Equipped with a differential \(d \) determined by:

- \(d\alpha = 0 \) for \(\alpha \in Q_1 \)
- \(d\alpha^* = \partial_\alpha W \) for \(\alpha \in Q_1 \)

where \(\partial_\alpha : HH_0(kQ) \to kQ \) (the cyclic partial derivative) given by

\[
\partial_\alpha(w) = \sum_{w=u\alpha v} vu
\]

- \(dt_i = e_i \left(\sum_{\alpha \in Q_1} [\alpha, \alpha^*] \right) e_i \)
- \(([x, y] = xy - yx) \).

Extend to all of \(\Gamma_{(Q,W)} \) by Leibniz law:

\[
d(xy) = d(x)y + (-1)^{|x|}xd(y).
\]

Example

\[
\begin{align*}
d\alpha &= d\beta = d\alpha^* = d\beta^* = 0 \\
dt_1 &= \alpha\alpha^*, dt_3 = -\beta^*\beta \\
dt_2 &= \beta\beta^* - \alpha^*\alpha
\end{align*}
\]
If Q is acyclic (e.g. Q Dynkin) $HH_0(kQ) = 0$; hence the only potential Q admits is the trivial one $W = 0$. In this situation we write $\Gamma_Q = \Gamma_{(Q,0)}$.

For Q acyclic $kQ = H^0\Gamma_Q$. But what about higher degrees?

Definition

Define the **weight** of a path γ in \hat{Q} to be the number of times γ traverses a loop t_i.

Gives a weight grading on Γ_Q. Descends to a grading on $H^*\Gamma_Q$. Denote the weight w component of $H^*\Gamma_Q$ by $H^w\Gamma_Q$.
The Preprojective Algebra

Recall the **preprojective algebra** of Q is the algebra $\Pi_Q = k\overline{Q}/(\rho)$ where

- \overline{Q} is the subquiver of \widehat{Q} consisting of arrows of weight 0.
- $\rho = \sum_{\alpha \in Q_1} [\alpha, \alpha^*]$.

Example

$$
\begin{align*}
1 & \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \\
\sim & \sim \\
1 & \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3
\end{align*}
$$

Π_Q contains kQ as a subalgebra. As a (right) kQ-module it splits into a direct sum of preprojective indecomposable modules with each isoclass represented exactly once.

$$
\Pi_Q = H^*_0 \Gamma_Q \subset H^* \Gamma_Q. \text{ This inclusion is proper in general.}
$$
The Preprojective Algebra

For Q Dynkin, we have an (covariant) involution η of Π_Q:

1. Let $\bar{\eta}$ be the involution of the underlying graph $|Q|$ of Q

 \[\bar{\eta} = \begin{cases}
 \text{identity map} & |Q| = D_{2n}, E_7, E_8 \\
 \text{unique non-trivial involution} & |Q| = A_n, D_{2n+1}, E_6
 \end{cases} \]

2. This determines an involution of \bar{Q} by requiring $\eta(\alpha): \eta(i) \to \eta(j)$ for $\alpha : i \to j$ in \bar{Q}.

3. Determines an involution of $k\bar{Q}$ preserving (ρ) and so gives an involution η of Π_Q.

Example

\[
\begin{array}{c}
1 \\
3 \\
\end{array} \quad \begin{array}{c}
\rightarrow \\
\rightarrow \\
\end{array} \quad \begin{array}{c}
2 \\
\cdots \\
(2n + 1)
\end{array} \quad \begin{array}{c}
\eta \\
\rightarrow \\
\rightarrow \\
\end{array} \quad \begin{array}{c}
3 \\
1 \\
\end{array} \quad \begin{array}{c}
\rightarrow \\
\rightarrow \\
\end{array} \quad \begin{array}{c}
2 \\
\cdots \\
(2n + 1)
\end{array}
\]

Stephen Hermes (Brandeis University) On the Homology of the Ginzburg Algebra April 23, 2013 8 / 18
The involution η is used to construct $\mathcal{D}^b(kQ)$ from mod kQ:

Example

$Q : 1 \rightarrow 2 \rightarrow 3$

[Diagram showing the relations between P_1, P_2, P_3, l_1, l_2, l_3, S_2, with arrows indicating the connections between them.]
The Homology of Γ_Q

Theorem (H.)

Suppose Q is Dynkin. Then there is an algebra isomorphism

$$H^*\Gamma_Q \cong \Pi^\eta_Q[u]$$

where $\Pi^\eta_Q[u]$ is the η-twisted polynomial algebra. Moreover, under this isomorphism, polynomial degree corresponds to weight.

As a k-vector space $\Pi^\eta_Q[u] = \Pi_Q \otimes_k k[u]$; the multiplication is given by

$$(xu^p) \cdot (yu^q) = x\eta^p(y)u^{p+q}$$

for $x, y \in \Pi_Q$.
Remark on the Proof

The proof is given by showing both $H^*\Gamma_Q$ and $\Pi^\eta_Q[u]$ are isomorphic to

$$\bigoplus_{n \geq 0} H^* \mathcal{P}_{dg}(kQ)(kQ, \tau^{-n}kQ)$$

where $\mathcal{P}_{dg}(kQ)$ denotes the dg category of bounded projective complexes of kQ-modules with morphisms of arbitrary degree, and τ denotes the Auslander-Reiten translate.

The element $u \in \Pi^\eta_Q[u]$ comes from the evident map $kQ \to kQ[1]$.
Corollary (Folklore?)

There is an isomorphism

\[H^* \Gamma_Q \cong \bigoplus_{n \geq 0} F^n kQ \]

in \(\mathcal{D}^b(kQ) \) where \(F = \tau^{-}[1] \).

Knowing \(H^* \Gamma_Q \) is nice, but we really want \(\Gamma_Q \). To recapture \(\Gamma_Q \) we need to know an \(A_\infty \)-structure on \(H^* \Gamma_Q \).
Definition

An A_∞-algebra is a k-module V together with “multiplications”

$$\mu_n : V^\otimes n \to V, \quad n \geq 1$$

satisfying the relations

$$\sum_{\substack{n=p+q+r \geq 1, p, r \geq 0 \atop q \geq 1}} (-1)^{p+qr} \mu_{p+1+r} \circ (1^\otimes p \otimes \mu_q \otimes 1^\otimes r) = 0.$$

n=1: $\mu_1 \circ \mu_1 = 0$ i.e., (V, μ_1) is a chain complex

n=2: $\mu_2 \circ (1 \otimes \mu_1 + \mu_1 \otimes 1) = \mu_1 \circ \mu_2$

i.e., $\mu_2 : V \otimes V \to V$ is a chain map.

n=3: $\mu_2 \circ (\mu_2 \otimes 1) - \mu_2 \circ (1 \otimes \mu_2) = \mu_1 \circ \mu_3 + \mu_3 \circ d_{V^\otimes 3}$

i.e., μ_2 is associative up to a homotopy μ_3

n=4: ...
Examples

- Any ordinary associative algebra ($\mu_n = 0$ for $n \neq 2$); Conversely, for an A_∞-algebra V with $\mu_1 = 0$, (V, μ_2) is an associative algebra.
- Any differential graded algebra ($\mu_n = 0$ for $n \geq 2$)
- Any chain complex homotopy equivalent to an A_∞-algebra (not true for dgas!)

Remark

Two dgas (A, d_A, μ_A) and (B, d_B, μ_B) are quasi-isomorphic (as dgas) if and only if the A_∞-algebras $(A, d_A, \mu_A, 0, \ldots)$ and $(B, d_B, \mu_B, 0, \ldots)$ are quasi-isomorphic (as A_∞-algebras).
Kadeishvili’s Theorem

Theorem (Kadeishvili)

Let A be a dga. Then there is a unique A_∞-algebra $(H^*A, \mu_1, \mu_2, \ldots)$ so that:

- $\mu_1 = 0$
- μ_2 is the usual multiplication
- the map $j : HA \to A$ given by choosing representative cycles is a quasi-isomorphism of A_∞-algebras.

The A_∞-algebra H^*A above is called the **minimal model** of A. Kadeishvili’s Theorem says dgas are determined (up to quiso) by their minimal models (up to A_∞-quiso).
The Minimal for Γ_Q

Recall there is an isomorphism $H^*\Gamma_Q \cong \Pi^\eta_Q[u]$.

Theorem (H.)

Suppose Q Dynkin and let $(H^*\Gamma_Q, 0, \mu_2, \mu_3, \ldots)$ be the minimal model of Γ_Q.

1. The maps μ_n are u-equivariant.
2. The element $u \in \mu_3 \left(\Pi^\otimes_3 Q \right)$ and so $H^*\Gamma_Q$ is generated as an A_∞-algebra by Π_Q.
3. The higher multiplications $\mu_n = 0$ for $n > 3$.

Stephen Hermes (Brandeis University)
On the Homology of the Ginzburg Algebra
April 23, 2013 16 / 18
Remark on Proofs

Recall

\[H^* \Gamma_Q \cong \bigoplus_{n \geq 0} H^* \mathcal{P}_{dg}(kQ)(kQ, \tau^{-n} kQ) \]

and \(u \) maps to \(kQ \to kQ[1] \) under this isomorphism.

The category \(\mathcal{P}_{dg}(kQ) \) of projective complexes is a dg category so \(H^* \mathcal{P}_{dg}(kQ) \) is an \(A_\infty \)-category. Transfers to \(A_\infty \)-structure on \(\bigoplus H^* \mathcal{P}_{dg}(kQ)(kQ, \tau^{-n} kQ) \).

Proofs given by studying \(A_\infty \)-structure on \(H^* \mathcal{P}_{dg}(kQ) \).
Thank You!