
Northeastern University, PHYS5318 Spring 2014, page 1

Experiment 1: Programming and data analysis in
Labwindows/CVI

In experimental physics, the main goal is always to obtain quantitative information
about a physical system. This is usually done with an instrument or detector that is
sensitive to some quantity of interest. Measurements of these quantities result in data
that must be analyzed. Some experiments, such as some of those done by biochemists,
result in so few data points that it is sufficient to write down the resulting numbers in a
table, and then perhaps to do some calculations with a spreadsheet program such as MS
Excel. Most of the time, however, there is enough data generated that it must be
analyzed with a computer program. Sometimes these programs are obtained as
commercial software designed to analyze a specific type of data. However, many
researchers find that they need to write their own program in order to properly analyze
experimental data. Therefore, programming knowledge is essential for any experimental
physicist. In this course, we will introduce you to some simple programming techniques
so that you have an intellectual basis for the development of further programming skills,
such as those needed for the computational physics course offered every fall.

There are many programming languages available for data analysis, such as Fortran, C,
Pascal, Basic, MathCAD, Origin, Kaleidagraph, etc. There are significantly fewer
programs available that allow one to directly access data acquisition cards, which are
used to obtain data directly from an instrument to a computer. The most typical
programs in use for data acquisition are Labview and Labwindows (CVI), both from
National Instruments, one of the main companies that makes data acquisition hardware.
Labview is an entirely graphical programming language. It is the most commonly used
program in experimental labs, and it can be used for many types of programs, but
because of the graphical nature of the language, it becomes quite cumbersome and
unwieldy when loops and other constructs are needed. It does, however, allow one to

quickly set up an experiment to
acquire, display, and save data
without having any prior
programming experience. This
is done by allowing the user to
create a virtual instrument (VI),
which represents the user
interface. The VI contains
buttons and displays that
execute functions designed in
the graphical programming
language. Some of the
experiments we will do later
have prewritten programs in
Labview that acquire data.

Figure 1. National Instruments CVI startup.

Northeastern University, PHYS5318 Spring 2014, page 2

However, very little if any Labview programming will be required for this course.

In Experiment 1, we will learn to use Labwindows. Labwindows has the same virtual
instrument format as Labview, but the buttons run functions in C and the displays are
the results of calculations done in C. Thus, Labwindows contains a nice combination of
an easy to use virtual instrument interface with a powerful programming language that
is commonly used by both theoretical and experimental physicists.

1. Programming in Labwindows

Before you begin, create a new folder in the Student directory with your name and
your partner’s name in the title. Save all newly created files to this directory.

In this lab, we will learn how to
analyze data using Labwindows.
To do this, you will learn to
create a virtual instrument
panel. Start by running “National
Instruments CVI” on one of the
laboratory computers. You will
see the window shown in Fig. 1.
To create a new program,
choose File -> New -> User
Interface. All programs start
with a user interface, and this is
how each user will interact with
the program. All of the user-
interactive elements of the
program are represented by switches, buttons, and numeric displays and controls that
are first created as part or the
.uir file.

Now you will need to design
your virtual instrument. To do
this, first think about what the
user will input into the program
and how to display the results.
The user interacts with the
program by entering numbers
into boxes and by pushing
buttons and changing switches.
The first object you should
create in any panel is a quit
button. This button will end the

Figure 2. Blank user interface at startup.

Figure 3. User interface with command button.

Northeastern University, PHYS5318 Spring 2014, page 3

program when activated by the user. To do this, right-click on the untitled panel and
choose a command button. It should appear as shown in Fig. 3. To edit your command
button, double-click on it to see the screen in Fig. 4.

The screen in Fig. 4 controls the
way this button will function
when the program is run. You can
rename it by typing in Label.
Name this one Quit after its
function. Note that the Constant
Name is COMMANDBUTTON, a
reasonable default name. This will
work fine in the program you will
write. The “Callback Function” is
very important. This tells the
program whether or not it will run
a subroutine when the button is
clicked. In this case, we want the
button to terminate the program,
so we will need a function to do
this. Call this function “Bye”. After
doing this, you can close the Edit
Command Button window by
choosing OK. You should now
have a Panel with a Quit button.
However, there is no code to
execute yet.

To create execution code, we can
have CVI start things out for us.
First, save your new program
using the File -> Save As
command. Then choose Code ->
Generate -> All Code. This will
generate the screen in Fig. 5. The
defaults are fine, but every
program must have a
QuitUserInterface Callback, which
in this case is the Bye function, so
this should be selected.

When you select OK, the CVI
program will create your new C
program, which will look like that

Figure 4. Edit command button window.

Figure 5. Creating skeleton code.

Northeastern University, PHYS5318 Spring 2014, page 4

shown in Fig. 6. Note that this is automatically formatted correctly for C (or C++) and
you can simply insert any more text directly into the program between the curly
brackets in main {}. Any additional items that you add to your user interface can also
have their own callback functions. This is a menu-driven system, so just look for
something that seems like it will do what you want, and try it out. As you create more
callback functions, they will appear below main. Very little CVI programming is done in
the main section of the program. Most of what will be done in the program will be done
by a function that is activated
upon choosing a button.

After creating the Quit button,
you can create other buttons that
will have new program functions.
Create a new button on the user
interface and name it add_one.
Name the control callback
add_one as well. Then right-click
on it and choose Generate
Control Callback. This creates the
add_one function in your C code
that will be executed. For now,
leave the function blank. Now choose Debug from the Run menu and your program will
run. If you click on the new button (the one you just created), it will do nothing because
there is no code in that function. If you click on Quit, the program will terminate. You
have now written a working (and useless) C program.

2. Elements of the C code.

The C code you have generated consists of several parts. At the top, we have several
“#include” statements. These statements “include” other C code that is not explicitly
written in your code. If we didn’t have these include statements, C code would be very
long and cumbersome. CVI already included the files it needs, such as cvirte.h (CVI
runtime environment) and userint.h (the user interface header). We do not need to
worry about these “header files”. Header files are just files containing more C code, but
which end in “.h”. If you are curious you can open these files in CVI and read the C code
that makes up the user interface.

The next section reads “static int panelHandle;” This line declares the variable
panelHandle. Here static means that this is a global variable – it can be used in the main
program and in other functions. “int” means that this variable is an integer. This is one
of several variable types such as char (text), short (short integer, same as int), long (long
integer), float (single precision decimal number), and double (double precision decimal).
Most data will be float or double. CVI functions (found in the function library) often
require specific types of variable, and these will be found in the function description.

Figure 6. Newly created skeleton code.

Northeastern University, PHYS5318 Spring 2014, page 5

The next section of the program is shown below:

This is the main program. The LoadPanel function loads the user interface you have
created. Displaypanel displays it on the desktop and RunUserInterface runs the event
handler routine. This routine responds only when a specific item on the interface panel
is clicked, at which point it runs the appropriate function, such as Bye. When the Bye
function is called, it returns to main and DiscardPanel closes the interface and
terminates the program.

All of the functions are listed below this, with the Bye and add_one function shown
here:

The Bye function will execute whenever the Quit button is clicked on. It runs the
function QuitUserInterface, which terminates the program. The add_one function does
nothing yet, but we will use it later.

3. Writing a simple program

Now we will make use of our new powers to create a slightly less useless program. The
“add_one” button will serve to add one to a number that is being displayed. To do this,
in addition to the command button, we also need to display a number. We can add a
display to the panel by right-clicking and choosing numeric (the first choice). Double-
click on this to set its properties. By default it is a control, but we want it to be a display,
so change its Control Mode to indicator. Our program needs to start with a number, so
for our input we need a numeric control whose Control Mode is “Hot”. Add this to your
panel, so we have a numeric control, a numeric display, and the “add_one” button. The
variable types should be int for both the control and display. We want to input a
number (in this case an integer), then click on add_one and have the computer add one

Northeastern University, PHYS5318 Spring 2014, page 6

to the input number. Clearly the input number needs to have a variable assigned to it.
This should be done whenever a user types in a number, so the control needs a callback
function. We’ll call it input. Name the callback function and generate the control
callback in the C code, as we did for the command button.

NOTE: Whenever you write a section of code, it is very useful to insert a comment
indicating the purpose of the code. This is done by first typing “/* comment comment
comment */”. CVI will change commented characters green to indicate that this section
will not be executed.

Now we have our user interface and skeleton code. However, we have to tell the
program what to do when a user enters a number. When a number is entered, the
“input” function will execute. We can enter code in between “case EVENT_COMMIT:”
and “break;”. How do we obtain the information from the front panel and assign it to
the variable x? We need a special function from the CVI library. On the left column, you
will see a folder named “Libraries”. Under Controls/Graphs/StripCharts and General
Functions, you will find many useful user interface functions, including “GetCtrlVal”,
which we can now use to get the value that the user has input to the control. When you
select GetCtrlVal from the library, you will get a new window with boxes for variable
names, as shown below.

When you type variable names in the boxes, they appear in the correct syntax at the
bottom of the window. This text can be copied directly into the program. Alternatively,
CVI will insert it into the currently selected location in the C code if you click on the
Insert Function call button. How do you know what variables to put in each box? Usually
this can be deduced from the context or from the explanation obtained by right-clicking
on each box. In addition, by clicking in a box and then choosing Code -> Select UIR

Northeastern University, PHYS5318 Spring 2014, page 7

constant or Select variable, one obtains a choice of currently defined variable names
that can be used in the box. Thus, clicking in Control ID and choosing Select UIR constant
generates a list of constants that defines the command buttons and numeric controls
that are currently on the user interface.

The library can also be used to define new variables. We would like to get the value of
the number in PANEL_NUMERIC_2 (or whatever control runs the input function) and
assign it to x. We fill in the Panel Handle and control indicator from the select variable
and UIR constant. Then we put x in the variable box and choose “declare variable” from
the library buttons. x is declared and appears in the box as “&x”. This function requires a
pointer rather than a variable. For our purposes, it is sufficient to let CVI decide whether
it needs a pointer or a variable, and this does not affect our program. Now you can
insert the completed function call.

Now each time a number is typed into that control, the value of x will be updated. To
add one to x, we need the add_one function. We can just add this code directly. It will
read simply “x=x+1;” and this will appear after “EVENT_COMMIT:” once again.

Now each time the add_one button is clicked, x will be incremented by one. To display
the resulting value, we need the “SetCtrlVal” function from the library. This can be
inserted below x=x+1 so that it updates the screen each time the number is
incremented. You should be able to run your program and add one to any number that
is input into the box. An example of a running program is shown below. It’s not yet a
very useful program, but it does make use of several of the functions we will need later.

Northeastern University, PHYS5318 Spring 2014, page 8

4. Displaying input from a file

We will now write a new program to input data from a file, display the data, and
manipulate the data. The program written in section 1 should be considered practice
and does not need to be described in your lab report. However, the program written
now will be needed for your lab report.

To input data from a file to be analyzed, the user will need to tell the program what file
to take data from, and what to do with the data. The user will probably in general know
what is in the file, but the best thing to do is to immediately plot the data so that the
user knows what was actually in the file. Therefore, in addition to your Quit button, you
will need a command button to select and input a file and another command button to
display the file. Having a separate button to display the data will be useful later when
the user makes changes to the file. You have already created C code that creates a
function that will be run when the user clicks on it. Now we want to have this button
input data from a file. For this, use the library function “FileSelectPopup”. This function
allows you to select a file and saves the path to that file into a character array. 300
characters should be sufficient for the array. On the next line, you will need to read this
file and save it to an array. You may do this in any way you like, as long as it works for a
general data file formatted in this way. Your method should not rely on particular values
that are found in your data file, and should not search for the value zero, for example.

One simple library function that will do this is the “FileToArray” function. However, this
will save your two-dimensional x-y data into a single array, with the x array first followed
by the y array. To use this you must have the program count the number n of elements
in the array and divide by two, then write two arrays of length n. These two arrays can
be used for plotting. Your program should not at any point use the number of lines input
directly by the programmer. It must work for arrays of arbitrary length.

After you have figured out how to input data from the file into an x and a y array, you
can plot the data using the PlotXY function from the library. Note you will also need a
“graph” object on your .uir panel. This object does not need a callback function, as it is
just an indicator.

The instructor will provide you with a file containing data to be analyzed using your
program. Make sure your program properly displays the data before continuing to make
your program more complex. At this point, make sure all of the code is commented and
that you have saved your application to a unique filename for your group. If it worked,
while your program is active press “alt-print screen” and a picture of your results will be
saved to the clipboard in Windows. Open an MSWord document and paste the picture
into your document by choosing paste from the edit menu. The picture you have
created is referred to as a “screenshot”. This is your proof that your application works.
Make sure the application has your name and your partner’s name on the front panel so
we know it was your application.

Northeastern University, PHYS5318 Spring 2014, page 9

5. Subtracting baselines and normalizing data

Two common operations to perform on data are normalization and baseline
subtraction. Data obtained from a detector often has an unchanging background that
should be subtracted to obtain the actual signal. If this is done regularly, it is nice to
build such a function into the virtual instrument panel. To do this, you will need to add
a button that subtracts a baseline and a numerical input that determines what
amount to subtract from the signal. Label this section of your VI “baseline”.

Data is often normalized in two ways. Sometimes it is normalized so that the maximum
value of the data is one. This can be unreliable, and it is common to instead calculate
the area under a measured curve so that it is equal to one. This is the normalization we
will use. Note that it is important to subtract a baseline before normalization. To
calculate the normalization constant, you must numerically integrate the data. The
simplest numerical integration, which we will use, is to take your data, which is in
intensity as a function of some variable such as position or time, and sum the product of
each measurement times the bin width (which may be in meters or seconds or some
other useful unit). Your program should have a button that normalizes the data and a
numerical output that displays the factor by which the data must be divided for
normalization, which represents the area under the curve. The displayed result should
give a plot of data that sums to one when integrated.

6. Finding the centroid of the data

When analyzing image data or other data that contains peaks, it is often desirable to
find the “center” of a peak. However, it is not always clear what one means by the
center of a peak. Is it the highest point, or the mean value? One robust definition of the
center of the peak is referred to as a centroid. This is useful in imaging because many
objects that are smaller than optical resolution are detected as a larger sphere, and the
location of such an object can be identified to higher than optical resolution by
identifying the centroid of the object’s image. Thus, for example the position of a
micron-sized polystyrene bead can be measured with an accuracy of 10 nm using image
analysis.

The final capability you should add to your program is the ability to identify the position
of the centroid of the data. The centroid is defined as the center of the area of the peak.
In other words, the centroid is the position at which half of the total area under the data
is reached. To calculate this, your program must first calculate the entire area, which is
done already for normalization. Your C code must then calculate the area again, but
within the loop that calculates the area, there must be a conditional statement that
identifies the position at which this area reaches one half of the total area. Your
program should numerically display the value of the centroid of the data after the
“calculate centroid” button is selected.

Northeastern University, PHYS5318 Spring 2014, page 10

7. Data extraction: writing your data to a file

When taking data in experimental physics, it is never enough to have a program that
displays the raw data. You need to create a file that contains the raw data so you can
take that data later and manipulate it using MS Excel or some other analysis program.
Here you will modify your program by adding a “save to file” command to your virtual
instrument. Find from the library a function that will allow you to save your array to a
file (such as ArraryToFile). Write your program so that it outputs two columns of
analyzed data. In Excel, each column is separated by a tab. Use your program to analyze
your data file, subtracting the baseline and normalizing the data. Then output the
analyzed data to a file and plot the final analyzed data in Excel. Label your axes and add
a title. Save this file to import into your lab report later.

8. Writing your lab report

One of the most important skills for an experimental physicist is the ability to
communicate your experimental results. Your lab report should describe your
experiment step by step and relate the experimental results and methods quantitatively
using words and graphic illustration. Your lab report should describe your experiment
step by step and relate the experimental results and methods quantitatively using words
and graphic illustration. As before, this report should contain an introduction describing
the goals of the experiment, an overview of the methods used, and what type of results
you expect to observe. This should be followed by a “Materials and Methods” section
that described in detail the methods used, including all software and hardware. For this
particular lab and the next lab, you should describe how the code works in this section.
In later labs, the code should be included only as an appendix, if you needed to write
code for that lab. Next, the “Results” section should illustrate the specific results
including inline numbered figures with captions and text describing what is in the
figures. Screenshots of the results from your data analysis program should be presented
in this section. Clear, legible graphs made in excel or another program showing your
final results should also be presented. Next, the “Discussion” section should contain
further theoretical analysis of the results as well as a discussion of their meaning, and
whether or not they are consistent with what you expect from your knowledge of the
experiment (which is here primarily the shape of the graph and the measured values
you observe). Finally, your conclusion should state what you have accomplished
(scientifically) with the program and what specific values you measured.

