Research Design

No Readings
Choosing a research design

1. Know your goal ...
2. Divide your goal into measurable questions ...
3. Identify behaviors to investigate ...
4. Identify potentially important variables ...
5. Identify commonly used methods for measuring variables (if they exist) ...
Background: Maturity in scientific fields

• New scientific fields/areas: **Exploratory data collection and analysis**
 – Classifying behaviors, identifying potentially important variables, exploring
 – Example: User Experience in Games

• Established fields: **Hypothesis testing**: evaluating potential explanations for observed relationships
 – Example: monetization in F2P
Eye Tracking experiment

• A Dynamic Lighting System can be used to dynamically channel visual attention
• Non-gamers’ do not spot enemies fast enough to respond
• Dynamic Lighting system will enable non-gamers to respond faster – better gameplay

Was this exploratory or hypothesis based?
Experiment

• Participants:
 – 26 students 300-level course
 – Only 16 were usable
 • 3 Novice gamers
 • 10 casual gamers
 • 3 core gamers
Experiment – Method

- Using ISCN ETL-500 head-mounted eye tracker
- Recorded video with superimposed cursor
- Analyzed video manually
- Variables measured:
 - time to spot
 - time of player death
Experiment – Method

- Step 1: Participants Play Soul Caliber II
- Step 2: Configure eye tracker
- Step 3: 2 Play sessions (10 min. each)
 - Using UT2003
 - Using UT2003 with ALVA
- Step 4: DVD signal => AVI file
- Step 5: analyze AVI file
Results

• Difference in spotting times between FPS gamers, Casual gamers, and Non-gamers.

95% statistically significant for casual and non-gamers
Results

• Difference in deaths times between FPS gamers, Casual gamers, and Non-gamers.

95% statistically significant for casual and non-gamers
Conclusions

• Evidence of bottom-up process

• For casual & novice gamers:
 – significantly faster spotting time with ALVA
 – Players didn’t die as quickly with ALVA
 – Less reported frustration

• For gamers: no significant difference
 – In fact they said “the game was too easy”
Answering questions

• Two general ways in which to answer questions:

 – Observe what happens naturally in the world
 • Correlational and observational methods

 – Manipulate an aspect of the environment and observe what happens
 • Experimental methods
Eye Tracking experiment

• A Dynamic Lighting System can be used to dynamically channel visual attention
• Non-gamers’ do not spot enemies fast enough to respond
• Dynamic Lighting system will enable non-gamers to respond faster – better gameplay

Was this observational or experimental?
Variables

• Scientists are interested in how variables change, and what causes the change

• Anything that we can measure and which changes, is called a variable

• Variables can take many forms, i.e. numbers, abstract values, etc.

• Variables can be continuous or discrete
Eye Tracking experiment

- A Dynamic Lighting System can be used to dynamically channel visual attention
- Non-gamers’ do not spot enemies fast enough to respond
- Dynamic Lighting system will enable non-gamers to respond faster – better gameplay

What are the variables here?
Correlational vs. Causal research

• Main difference:

• Correlational and Causal research (experimental research) treats variables differently

• Experimental research: manipulates variables
• Correlational/Observational research: observes variables
Correlational vs. Causal Relationships

• **Causal:** Changes in one variable *directly influence* another
 – E.g. meteor hits earth, size of meteor determines numbers of dead dinos
 – If no meteor, no sudden death of dinos → causality

• Causal relationships can be **unidirectional:** A -> B
 – Meteor kills dinosaurs

• Or **bidirectional:** A <-> B
 – Exercise influence body weight (negatively), *and* body weight influence exercise (negatively)
Correlational vs. Causal Relationships

• **Correlational**: Variables covary, but not necessarily causal relationship
 – E.g. sales of ice cream increase during period of warm weather
 – E.g. number of mosquitoes and number of baseball games (both occur during Spring)

• **Correlational research is non-experimental**
 – We do not manipulate variables ->
 – Cannot infer causality

 – Many types of non-experimental but empirical methods
 – E.g. calculating average value of SAT scores
• Karl Popper
 – Distinguished between **scientific**- and **non scientific** statements
 – Scientific statements can be verified with reference to empirical **testing**
 • ”Beating children is morally wrong” – non-scientific
 • ”On Earth, gravitational forces pulls objects with mass towards the center of the planet” – Scientific
Testing theories

To test a theory (answer a question) you must:

1. Rule out other explanations of the supposed cause
 - **Control the conditions** of experiment
 - **Minimize risk** of random/unknown factors influencing result
 - **Randomize** the procedure

2. Gain confidence that one theory is correct and another is not
Testing theories

1) Ruling out other explanations:
We need to control the conditions of the experiment

– To verify if eating candy makes you fat, we need one experimental setup where candy is present, one where it is not

– The condition where the cause is absent is known as a control condition or baseline
Testing theories

• In the simplest situation, the cause is either present or absent (either we eat candy or not)

• There can also be multiple levels – (0 pieces of candy per day, 2, 4, 7, 10, 10000 etc.)

• The variable being manipulated is the independent variable – it depends only on the experimenter (candy)

• The variable not manipulated is the dependent variable – it’s value depend on the value of other variables in the experiment (how fat you get)
Testing theories

B) Minimize risk of random factors

• We should compare situations that are identical in all respects apart from the proposed cause (causal/dependent variable)

• All random factors should be held constant
 – Everyone should eat the same candy
 – Eat it at the same time of day
 – Be the same gender
 – Etc.
Testing theories

C) Randomizing procedure

• We can rule out many random influences by randomizing parts of the experimental study
 – randomly allocating participants to experimental and control groups – this spreads attributes randomly
 – Do not permit any systematic bias to enter the experiment
Testing theories

2) Gain confidence that one theory is correct and another is not

• The difference between the experimental group (cause is present) and the control group (cause is absent) must be "large" so as not to have occurred by chance

• This is where the statistics come in
The 4 aims of research

1. **Reliability**: Results can be replicated by others

2. **Validity (internal)**: Results show what we intend them to show
 1. Ability of a research design to test the hypothesis it was designed to test
 2. Measure what we want to measure

3. **Generalizability (external validity)**: Results have a wider application than merely the participants and the circumstances of the test

4. **Importance**: Results should be important (subjective).
 Results are never important if not reliable, valid and generalizable
Validity

• **Dependent variable** should be measured as **precisely** as possible

• Need to **define what it is that is measured**
 – Easy for some things: ”Number of dinosaurs killed”
 – Hard for others: ”Love”

• Popular solution: **Operational definition** – A well-argued definition for the particular study
 – Others may not agree, but at least you are clear
Validity

• Good experimental designs *maximise validity*

• **Internal validity:**
 – Extent to which we can be sure that changes in the DV are due to changes in the IV [meteor kills dinosaurs].
 – Requires *confounding variables* are eliminated

• **External validity (generalizability):**
 – Extent to which we can *generalise* from our participants to other groups (e.g. to real-life situations).
Validity

• Ecological validity
 – Extent to which research results can be applied to real life situations outside research settings
 – But focused on the degree to which findings can be observed in the real world
 – To have ecological validity, a research design must closely mimic the real life situation under investigation
 – (Ecology = science of interaction between organism and its environment)
Experiments are the best tool for establishing cause and effect

A good experimental design ensures that:
1) The only variable that varies is the independent variable/-s chosen by the experimenter
2) The effects of alternative confounding variables are eliminated (or at least rendered unsystematic by randomisation)
Choosing specific variables

- Choosing variables and defining these depend on multiple factors, e.g.:
 - **Research tradition of your field:** allows comparison across experiments
 - **Theory:** measures may have been defined previously
 - **Availability of new techniques:** new technology may allow new types of measures (e.g. EEG scans)
 - **Availability of equipment:** What do you have?
Choosing measures

• So we now know the **variables** and have **defined** them

• How do we **measure** them?
Choosing measures

• **Reliability** of measures
 – Ability to produce similar results when repeated measurements are made under identical conditions -> how much variance?
 – Bathroom weight +/- 1 point
 – Population estimates +/- 3%

• **Accuracy** of measures
 – E.g. 0.1 gram precision vs. 0.0001 gram precision.
 – **Bias:** if a measure on average measures more or less than the real value
Choosing measures

• **Validity** of measures
 – *The extent to which a measure measures what it is intended to measure*
 – E.g. head size as measure of intelligence?

 – Validity of measures especially problematic in psychology -> we cannot **directly** measure what goes on in people’s heads
Choosing measures

• General concerns:

• Choosing existing validated, reliable measures ...
 – Frees up time -> need not test reliability/validity
 – Binds you to existing theory/dogma

• If existing methods are not available, developing new measures ...
 – Frees you from existing theory/dogma
 – New measures must be evaluated for reliability and validity
Measurement scales

- Variables are measureable in different scales
- Measuring size of variables is important for **comparing results** between studies/projects
- Different measures provide different quality of data:
 - **Nominal** (categorical) data
 - **Ordinal** data
 - **Interval** data
 - **Ratio** data

Non-parametric

Parametric
Measurement scales

- Nominal data (categorical, frequency data)
 - When numbers are used as names
 - No relationship between the size of the number and what is being measured
 - Two things with same number are equivalent
 - Two things with different numbers are different
Measurement scales

- E.g. Numbers on the shirts of soccer players
- Nominal data are only used for **frequencies**
 - How many times "3" occurs in a sample
 - How often player 3 scores compared to player 1
Measurement scales

- Ordinal data

 - Provides information about the ordering of the data

 - Does not tell us about the relative differences between values
Measurement scales

- For example: The order of people who complete a race – from the winner to the last to cross the finish line.
- Typical scale for questionnaire data
Measurement scales

• **Interval data**

• When measurements are made on a scale with equal intervals between points on the scale, but the scale has **no true zero point**.
Measurement scales

• **Ratio** data

• When measurements are made on a scale with equal intervals between points on the scale, and the scale has a **true zero point**.

• e.g. height, weight, time, distance.

• Measurements of relevance include: Reaction times, numbers correct answered, error scores in usability tests.
Common user-oriented measures (HCI, Psychology ...)

• **Behavioral measures**
 – Recording activity of users, e.g. frequency, error rates, latency
 – Example: game analytics

• **Physiological measures**
 – Recording heart rate, respiration rate, brain activity etc.
 – Example: game user research
Common user-oriented measures (HCI, Psychology ...)

• **Self-Report Measures**
 – Participants report themselves, e.g. via survey
 – **Likert Scales** (disagree-agree scale to statements, e.g. 1 (strongly disagree) to 5 (strongly agrees))

 – Versatile and easy to use, but suffer from **validity** and **reliability** problems
 • Are participants being truthful?
 • Are participants happy/sad today?
 • People tend to respond in a *socially desirably way*
Common user-oriented measures (HCI, Psychology ...)

- **Implicit measures**
 - Measuring responses not under conscious control of the participant
 - E.g. *if playing a video game users are more likely to shoot men than women?* (in situation where decision needs to be instantaneous)

- Implicit measures require that participant must act fast to *decouple conscious decision making*
Manipulation checks

- Manipulation checks
 - Checking whether manipulation of IV had intended effect on participants
 - If participants perceived the experiment in the intended manner
 - E.g. understood survey questions correctly
Pilot studies

• Pilot studies

 – Small-scale version of a study used to establish procedures, materials and parameters

 – Always a good idea – can save resources as it points to problems/flaws in research designs early on
Class Assignment

• Candy Crush Experiment Design

Goal: I want to know if the game is addictive beyond first impression.

– What are your research questions?
– What is your approach (Hypothesis or Exploratory)?
– Experiment Design
 • Who are the participants
 • How many
 • What are the conditions
 • What are the dependent and independent variables or observable variables?