Finiteness for Tamagawa numbers


Brian Conrad

Stanford University

Harvard University

Thursday, March 25, 2010


Talk at 4:30 p.m. in Science Center D

Tea at 4:00 p.m. in the Math Lounge


Abstract:   The Tamagawa number of a linear algebraic group (over a number field or over the function field of a curve over a finite field) is a certain canonical volume that arises in settings as varied as the arithmetic of quadratic forms and counting connected components of certain moduli spaces of bundles over curves over finite fields. The finiteness of such volumes for all reductive groups was proved by Borel and Harder. The finiteness in general can then be easily deduced in characteristic zero, but the case of positive characteristic needs completely different ideas and was settled only very recently. We discuss some of the highlights of this story.


Home Web page:  Alexandru I. Suciu   Comments to:  
Posted: February 20, 2010    URL: