# REPRESENTATION THEORY, HINTS TO PSET 5 

IVAN LOSEV

Problem 1. Consider compositions of inclusions $\iota_{j}: U_{j} \rightarrow U$ and projections $\pi_{i}^{\prime}: U \rightarrow U_{i}^{\prime}$. You may also want to prove the following fact: for an infinite field $k$ and a $k$-algebra $A$ and isomorphism $M \oplus N \cong M^{\prime} \oplus N$ of finite dimensional $A$-modules, there is an isomorphism $M \cong M^{\prime}$.

Problem 2. In b), view a representation of this quiver as a single $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space with an operator of degree 1 .

Problem 4. Consider the irreducible components of $\mu^{-1}(0)$, where $\mu: V \oplus V^{*} \rightarrow \mathfrak{g}^{*}$ is the moment map. What is their number, their dimensions?

Problem 5. Use that the roots for $\tilde{D}_{4}$ are of the form $\alpha+n \delta$, where $\alpha=0$ or $\alpha$ is a root for $D_{4}$ and $\delta$ is the indecomposable imaginary root. Then apply the information about the irreducible representations of deformed preprojective algebras.

