
LECTURE 4: REPRESENTATION THEORY OF SL2(F) AND sl2(F)

IVAN LOSEV

In this lecture we will discuss the representation theory of the algebraic group SL2(F) and
of the Lie algebra sl2(F), where F is an algebraically closed field of positive characteristic,
say p.

1. Representations of sl2(F)

Here we assume that p > 2. The reason is that sl2(F) is not simple, i.e., contains proper
ideals when p = 2.

1.1. Center of U(sl2). The first thing we want to understand is the structure of the center.
It is useful because the central elements act by scalars on any finite dimensional irreducible
module.

An important feature of the positive characteristic story is that the center becomes bigger.
Roughly speaking, in addition to elements that were central in characteristic 0, we get a large
central subalgebra called the p-center. A general principle is that one should look at the pth
powers of elements.

We start with gln(F). For x ∈ gln(F), we can take xp ∈ U(gln(F)). On the other hand,
gln(F) = Matn(F) is itself an associative algebra and we can take the pth power of x there
(known as the restricted pth power). In order to distinguish between these two situations,
we write x[p] for the pth power of x in Matn(F).

Proposition 1.1. The element xp − x[p] is central in U(gln(F)).

In the proof we will use the following lemma.

Lemma 1.2. Let A be an associative F-algebra and x, y ∈ A. Recall that we write ad(x) for
the map A → A, ad(x)(a) := (xa− ax). We have ad(x)py = [xp, y].

Proof. We distribute ad(x)py. Let lx, rx denote the operators y 7→ xy and y 7→ yx so that
ad(x) = lx − rx. Since lx, rx commute, we get

ad(x)py =

p∑
i=0

(
p

i

)
(−1)ixiyxp−i.

Since
(
p
i

)
= 0 for 0 < i < p (we are in characteristic p), the right hand side is xpy− yxp. �

Proof of Proposition 1.1. Pick x, y ∈ gln(F). Applying Lemma 1.2 to A = U(gln(F)), we
have [xp, y] = ad(x)py in U(gln(F)). Note that the right hand side is in g. Now apply
Lemma 1.2 to A = Matn(F). We get [x[p], y] = ad(x)py. So [xp − x[p], y] = 0. Since gln(F)
generates U(gln(F)), we see that xp − x[p] is central. �

Now let G ⊂ GLn(F) be an algebraic group defined over Fp (i.e., by polynomials with
coefficients in Fp). One can show that g ⊂ gln(F) is closed with respect to the map x 7→ x[p],
see [J, Section 7] for details. In any case, for the subalgebras g = sln(F), son(F), spn(F), the
claim that g is closed with respect to x 7→ x[p] can be checked by hand. For example, in
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the case of sln(F), the condition that x ∈ sln(F) is equivalent to λ1 + . . . + λn = 0, where
λ1, . . . , λn are the eigenvalues of x counted with multiplicities. The eigenvalues of x[p] are
λp
1, . . . , λ

p
n, we get λp

1 + . . . + λp
n = (λ1 + . . . + λn)

p = 0 because the map λ 7→ λp is a ring
automorphism of F.

So we get a map ι : g → Z(U(g)), x 7→ xp−x[p]. Recall that the group G acts on g (adjoint
representation). This action is by Lie algebra automorphisms so it extends to an action of
G by algebra automorphisms on U(g). Therefore, it preserves the center Z(U(g)).

Proposition 1.3. The map ι : g → Z(U(g)) is additive, semi-linear in the sense that
ι(λx) = λpx for λ ∈ F, and G-equivariant. Moreover, if x1, . . . , xn form a basis in g, then

the elements xp
i − x

[p]
i ∈ U(g) are algebraically independent.

The claims that ι is semilinear and G-equivariant are straightforward. The claim that
ι is additive is more subtle and is left for the homework. The claim about the algebraic
independence follows from the PBW theorem.

The subalgebra generated by ι(g) inside U(g) is called the p-center. For g = sl2, it
is generated by ep, f p, hp − h. It does not coincide with the whole center of U(sl2). For
example, the Casimir element C = ef + fe+ h2/2 ∈ U(sl2) lies in the center but not in the
p-center.

1.2. p-reductions. Pick an element α ∈ g∗. Consider the quotient Uα(g) of U(g) by the
relations ι(x) − ⟨α, x⟩, x ∈ g. The algebras Uα(g) below will be called p-reductions (short
from “p-central reductions”). The element α is called the p-character.

Since any element of the p-center acts on M ∈ Irr(g) by a scalar, we see that the U(g)-
action on M factors through Uα(g) for α uniquely determined by M . So it is a natural
question to describe the structure of Uα(g).

Proposition 1.4. The dimension of Uα(g) equals p
dim g. Moreover, if x1, . . . , xn form a basis

of g, then the ordered monomials xm1
1 . . . xmn

n with 0 6 mi 6 p− 1 form a basis in Uα(g).

Proof. Recall that the monomials

(1.1) xpd1+m1

1 . . . xpdn+mn
n

di ∈ Z>0,mi ∈ {0, . . . , p− 1} form a basis in U(g) (the PBW theorem). Now consider a new
set of element indexed by the same di,mi:

(1.2) xm1
1 . . . xmn

n (xp
1 − x

[p]
1 − ⟨x1, α⟩)d1 . . . (xp

n − x[p]
n − ⟨xn, α⟩)dn .

We claim that the monomials (1.2) form a basis in U(g). Indeed, the difference between (1.1)
and (1.2) has degree that is strictly less than the total degree of any of these monomials,
this implies our claim about basis.

Now note that the elements xp
i −x

[p]
i −⟨α, xi⟩ are central. So the two-sided ideal generated

by these elements coincides with the linear span of basis elements (1.2), where at least one
of the degrees di is positive. This easily implies the proposition. �

So Irrfin(U(g)) =
⊔

α∈g∗ Irrfin(Uα(g)) (in the left hand side we have the set of finite
dimensional irreducible representations, note that there are no others by Problem 1 in
Homework 1 because U(g) is a finitely generated module over its center). For every α,
Irr(Uα(g)) = Irrfin(Uα(g)) is non-empty because dimUα(g) < ∞.

In particular, in the case of sl2(F) the elements e, f no longer need to act nilpotently on
a finite dimensional representations.
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Note that, if α, β ∈ g∗ are such that α = g · β, then the action of g ∈ G on U(g) induces

an algebra isomorphism Uβ(g)
∼−→ Uα(g). So it is enough to compute Irr(Uα(g)) for one α

per every G-orbit.

1.3. The case of sl2(F). Since we assume that p > 2, the form (x, y) = tr(xy) on g := sl2(F)
is non-degenerate. This form is SL2(F)-invariant. So the G-module g and g∗ are identified.
We know how to classify elements of sl2(F) (and, more generally, sln(F)) up to G-conjugacy,
the classification is given by the Jordan normal form theorem. So up to G-conjugacy, we
have three possibilities for M ∈ Irrfin(sl2):

(1) ep, f p, hp − h act by 0. Here α = 0.

(2) ep, f p − 1, hp − h act by 0. Here α =

(
0 1
0 0

)
.

(3) ep, f p, hp − h− λ act by 0 for λ ̸= 0. Here α =

(
λ/2 0
0 −λ/2

)
.

In the first case, M is called restricted – we will see below that it is obtained from an
irreducible representation of SL2(F). In all three cases e acts nilpotently, and as in the
characteristic 0 case, we can find an h-eigenvector v ∈ M annihilated by e. Let z be an
eigenvalue. Note that zp − z = 0 in cases (1),(2) (equivalently z ∈ Fp), while, in case (3), z
is one of the p solutions of zp − z = λ.

Now we are going to proceed as in the characteristic 0 case: we introduce analogs of
Verma modules for Uα(g). Namely, h, e ∈ Uα(g) generate a subalgebra in Uα(g) with basis
hℓek, 0 6 ℓ, k 6 p − 1. We denote this subalgebra by Uα(b). Consider the one-dimensional
U(b)-module Fz, where e acts by 0 and h acts by z, where z is above. It factors through
Uα(b) = U(b)/(hp − h− α(h), ep).

Form the induced module ∆α(z) := Uα(g) ⊗Uα(b) Fz (the baby Verma modules). This
module has basis f ivz, i = 0, . . . , p− 1, where hvz = zvz, evz = 0.

The following is the classification irreducible Uα(g)-modules (as well as the description of
the structure of the modules ∆α(z)).

Theorem 1.5. The following is true.

(i) In case (1), there are p pairwise non-isomorphic irreducible Uα(g)-modules L(z), z =
0, . . . , p − 1 of dimension z + 1, where Lα(z) is a simple quotient of ∆α(z). The
module ∆α(p − 1) is irreducible, while for i ̸= p − 1, there is an exact sequence
0 → Lα(−2− i) → ∆α(i) → Lα(i) → 0.

(ii) In case (2), all ∆α(z) are irreducible. We have ∆α(z) ∼= ∆α(z
′) if and only if

z + z′ = −2. We have (p+ 1)/2 irreducible Uα(g)-modules in this case.
(iii) In case (3), the g-modules ∆α(z) are non-isomorphic and form a complete collection

of the irreducible Uα(g)-modules.

The proof of this theorem will be in the homework.

2. Representations of SL2(F)

2.1. Correspondence between group and Lie algebra. A connection between the rep-
resentation theories of an algebraic groupG and the corresponding Lie algebra g is much more
loose than in characteristic 0. In a sentence, the representation theory of G in characteristic
p is much closer to characteristic 0, than the representation theory of the corresponding Lie
algebra.

Let V be a representation of G. It is also a representation of g.
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Lemma 2.1. Suppose V is irreducible over G and g∗G = {0}. Then the only eigenvalue of
ι(g) in V is zero.

In fact, a stronger statement is true: for a rational representation V of G, the U(g)-action
on V factors through U0(g).

Proof. For a g-module M and g ∈ G, define a new g-module M g that coincides with M as a
vector space but the action of g is modified: if φ is a representation of g in M , then φ◦Ad(g)
is a representation of g in M g. Similarly, we can define the G-module V g. But V ∼= V g as a
G-module, and so also as a g-module. On the other hand, if α is a p-character of M , then
g−1 · α is a p-character of M g. Since g∗G = {0}, we see that the only eigenvalue of ι(g) in V
is zero. �

On the other hand, many nontrivial G-modules give rise to trivial g-modules, we have
seen this already in Example 1.2 of Lecture 3. Consider the Frobenius automorphism,
Fr : F → F, x 7→ xp. It lifts to an automorphism of GLn(F) (entry-wise) also denoted
by Fr. For any algebraic subgroup of GLn(F) defined over Fp, the automorphism Fr of
GLn(F) restricts to an automorphism G → G. So, for a rational representation V of G,
we can consider its pullback Fr∗V , which is also a rational representation of G (if ρ is a
representation of G in V , then ρ ◦ Fr is the representation of G in Fr∗V ). Note that the
tangent map of Fr is zero at any point (derivatives of the pth powers are equal to 0). So g
acts on Fr∗V by 0. From here it is easy to that even if a representation of g integrates to a
representation of G, then it does so in infinitely many non-isomorphic ways.

2.2. Weight decomposition. The first thing to notice is that a rational representation of
SL2(F) still has a weight decomposition, which in this case is a decomposition with respect
to the action of the subgroup T of diagonal matrices in SL2(F) that is isomorphic to the
multiplicative group F×.

Lemma 2.2. Any rational representation V of F× splits into the direct sum of one dimen-
sional rational representations of F×.

Proof. From Linear algebra, we know that any two commuting diagonalizable operators
are simultaneously diagonalizable. In fact, this is true for any collection (even infinite) of
diagonalizable operators. The collection we take consists of all elements of F× that are of
finite order coprime to p hence diagonalizable. Denote this collection by Λ. So the elements
from Λ are simultaneously diagonalizable. The non-diagonal matrix coefficients of V vanish
on Λ and so are zero. �

Recall (Example 1.2 of Lecture 3) that the one-dimensional rational representations of F×

are classified by integers: to n ∈ Z we assign the representation given by z 7→ zn.
Now let V be a rational representation of SL2(F). We can decompose it into the direct sum

V =
⊕

n∈Z Vn, where Vn = {v ∈ V |
(
z 0
0 z−1

)
v = znv}. By a highest (resp., lowest) weight

of V we mean the maximal (resp., minimal) n such that Vn ̸= {0}. Note that Vn
∼= V−n. An

isomorphism between these spaces is provided by the action of

(
0 1
−1 0

)
because conjugating(

z 0
0 z−1

)
with

(
0 1
−1 0

)
we get

(
z−1 0
0 z

)
. So the lowest weight is negative the highest

weight.
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Theorem 2.3. For each n ∈ Z>0, there is a unique irreducible representation L(n) of SL2(F)
with highest weight n.

This theorem will be proved below. An idea of the proof is similar to the case of sl2(C):
we will produce an analog of a Verma module called a Weyl module.

2.3. (Dual) Weyl modules. Consider the representation W∨(n) := Sn(F2) (a dual Weyl
module) of SL2(F). Let x, y ∈ F2 be a basis with weights 1,−1. Then xn, xn−1y, . . . , yn form
a basis in W∨(n) with weights n, n−2, . . . ,−n. The reason why this representation is useful
is that it has the following universality property. Let B denote the group of upper triangular

matrices. Consider the one-dimensional representation F−n of B, where b :=

(
z x
0 z−1

)
acts

by χ(b)−n, χ(b) := z.

Proposition 2.4. For a rational representation V of G = SL2(F), we have a natural iso-
morphism HomG(V,W

∨(n)) ∼= HomB(V,F−n).

Proof. In the proof we will need a geometric realization of W∨(n): as the global sections
Γ(O(n)) of the line bundle O(n) on P1. The group G acts on P1 = P(F2) and moreover, P1

is the homogeneous space G/B. The bundle O(n) carries an action of G that is compatible
with the action of G on P1. In other words, this is a homogeneous vector bundle. To give
such a bundle one only needs to specify a fiber at one point that is a representation of the
stabilizer. Pick a point [1 : 0] ∈ P1 whose stabilizer is B. The fiber O(−1)[x:y] of O(−1) at a
point [x : y] ∈ P1 is the line passing through this point. It follows that O(−1)[1:0] ∼= F1 (an
isomorphism of B-modules). So O(n)[1:0] = (O(−1)∗)⊗n

[1:0] is the B-module F−n.

Now we are ready to produce an isomorphism HomG(V,W
∨(n)) → HomB(V,F−n). Note

that W∨(n) = Γ(O(n)) coincides with {f ∈ F[G]|f(gb) = χ(b)nf(g)}. It follows that
Hom(V,W∨(n)) coincides with the space of polynomial maps φ : G → V ∗ such that φ(gb) =
χ(b)nφ(g). So HomG(V,W

∨(n)) = (V ∗⊗W∨(n))G coincides withH := {φ : G → V ∗|φ(gb) =
gχn(b)φ(1)} (such a map is automatically polynomial). The map φ 7→ φ(1) establishes an
isomorphism of H with (V ∗ ⊗ F−n)

B. �

We define the Weyl module W (n) as W∨(n)∗. It follows from Proposition 2.4 that

(2.1) HomG(W (n), V ) = HomB(Fn, V ) = {v ∈ V |bv = χ(b)nv, ∀b ∈ B}.

Proof of Theorem 2.3. Let V be an irreducible SL2(F)-module with highest weight n. Any

vector in Vn is invariant under the subgroup {
(
1 z
0 1

)
} (this is a homework problem). From

(2.1) we conclude that V is an irreducible quotient of W (n). Now the proof repeats that of
Proposition 2.6, Lecture 3. In particular, L(n) is the unique irreducible quotient ofW (n). �

Remark 2.5. Note that L(n) ∼= L(n)∗ (both sides are irreducibles with highest weight n).
So L(n) ↪→ W∨(n). The kernel of W (n) � L(n) only has simple composition factors L(m)
with m < n because all the weights in the kernel are less than n. The same is true for the
cokernel of L(n) ↪→ W∨(n).

2.4. Steinberg decomposition. Here we are going to explain the structure of L(n). The
description we are going to give is “inductive”. The base is n < p.

Lemma 2.6. Let n < p. Then L(n) ∼= W∨(n) ∼= W (n). As a g-module, L(n) ∼= L0(n).
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Proof. Since n < p, we have Sn(V )∗ ∼= Sn(V ∗) for any finite dimensional F-space V . Further,
the SL2(F)-module F2 is self-dual. So the module W∨(n) = Sn(F2) is self-dual. From
Remark 2.5, it follows that W∨(n) = L(n). The claim about the isomorphism of g-modules
is straightforward. �

Here is an “induction step”.

Lemma 2.7. For n < p and d > 0, we have an isomorphism L(dp+n) ∼= L(n)⊗ Fr∗L(d) of
SL2(F)-modules.

Proof. The highest weight of the right hand side is dp + n so it is enough to show that the
right hand side is irreducible. As a g-module, Fr∗ L(d) is trivial. If V is a G-submodule
of L(n) ⊗ Fr∗L(d), then it is also a g-submodule. By the proof of the Burnside theorem
in Lecture 1, V = L(n) ⊗ V0, where V0 ⊂ Fr∗L(d). We have V0 = Homg(L(n), V ) ↪→
Homg(L(n), L(n) ⊗ Fr∗L(d)) = Fr∗L(d). Note that Homg(U1, U2), where U1, U2 are G-
modules, is a G-module (unlike in the characteristic 0, this module can be nontrivial). The
equality Homg(L(n), L(n)⊗ Fr∗L(d)) = Fr∗L(d) is that of G-modules. But the pull-back of
an irreducible module under a group homomorphism is itself irreducible. So the G-module
Homg(L(n), V ) is included into an irreducible G-module. It follows that V0 = Fr∗L(d) that
finishes the proof. �

Our conclusion is that any L(n) decomposes (in a unique way) into the tensor product of
iterated pullbacks under Fr of L(m)’s with m < p (Steinberg decomposition). This allows to
determine the weight decomposition of L(n). It also allows to determine the multiplicities
of L(n)’s in the composition series of W (n′).
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